Elementary Number Theory

Math 17500, Section 30
Autumn Quarter 2008
John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/~boller/M175

Quadratic Residues and Quadratic Reciprocity

Definition 0.0.1 Fix $m>1$ and suppose $(a, m)=1$. If there exists $x \in \mathbb{Z}$ such that $x^{2} \equiv a(\bmod m)$, then a is called a quadratic residue $(\bmod m)$. If there does not exist such an $x \in \mathbb{Z}$, then a is called a quadratic nonresidue ($\bmod m$).

Definition 0.0.2 If p is an odd prime, then the Legendre symbol $\left(\frac{a}{p}\right)$ is defined as follows:

$$
\binom{a}{p}=\left\{\begin{aligned}
+1, & \text { if } a \text { is a quadratic residue }(\bmod p) \\
-1, & \text { if } a \text { is a quadratic nonresidue }(\bmod p) \\
0, & \text { if } p \mid a
\end{aligned}\right.
$$

Theorem 0.0.3 Let p be an odd prime. Then:
i. $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$
ii. $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
iii. $a \equiv b(\bmod p)$ implies that $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
$i v$. If $(a, p)=1$, then $\left(\frac{a^{2}}{p}\right)=1$ and $\left(\frac{a^{2} b}{p}\right)=\left(\frac{b}{p}\right)$.
v. $\left(\frac{1}{p}\right)=1$ and $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$
vi. $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$

For the last main theorem, Quadratic Reciprocity, we first need a Eisenstein's Lemma.
Definition 0.0.4 If x is a real number, then we denote by $[x]$ the greatest integer less than or equal to x. This is sometime known as the floor function.

To prove Eisenstein's Lemma, we first prove the following four lemmas. For these lemmas, we use the ad hoc notation that if $2 \leq u \leq p-1$ is an even integer, then $r(u)$ is the least positive residue of $q u(\bmod p)$.

Lemma 0.0.5 The number $(-1)^{r(u)} r(u)$ is even.
Lemma 0.0.6 The two sets $\{2,4, \ldots, p-1\}$ and $\left\{(-1)^{r(2)} r(2),(-1)^{r(4)} r(4), \ldots,(-1)^{r(p-1)} r(p-1)\right\}$ are identical.

Lemma 0.0.7 $q^{(p-1) / 2} \equiv(-1)^{r(2)+r(4)+\cdots+r(p-1)}(\bmod p)$
Lemma 0.0.8 $\frac{q u}{p}=\left[\frac{q u}{p}\right]+\frac{r(u)}{p}$
Theorem 0.0.9 (Eisenstein's Lemma) If p and q are distinct odd primes, then:

$$
\left(\frac{q}{p}\right)=(-1)^{S}, \text { where } S=\sum_{\substack{u=2 \\ u: \text { even }}}^{p-1}\left[\frac{q u}{p}\right]
$$

To prove Quadratic Reciprocity, we keep in mind the result of Eisenstein's Lemma and first prove the following lemmas. We make the following ad hoc definitions:

$$
\begin{aligned}
P & =\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 0<x<p, \quad 0<y<q\} \\
P_{1} & =\left\{(x, y) \in P_{0} \mid 0<y<q x / p, \quad x \text { is even }\right\} \\
P_{2} & =\left\{(x, y) \in P_{0} \mid 0<x<p / 2, \quad 0<y<q x / p\right\} \\
P_{3} & =\left\{(x, y) \in P_{0} \mid 0<y<q / 2, \quad 0<x<p y / q\right\}
\end{aligned}
$$

(Hint: It may help to consider the statements geometrically.)
Lemma 0.0.10 $S=\left|P_{1}\right|$ where S is the sum in Eisenstein's Lemma.
Lemma 0.0.11 $P_{1} \equiv P_{2}(\bmod 2)$
Lemma 0.0.12 $\left(\frac{q}{p}\right)=(-1)^{\left|P_{2}\right|}$
Lemma 0.0.13 $\left(\frac{p}{q}\right)=(-1)^{\left|P_{3}\right|}$ (Hint: Simliar!)
Lemma 0.0.14 $\left|P_{2} \cup P_{3}\right|=\frac{p-1}{2} \cdot \frac{q-1}{2}$ and $P_{2} \cap P_{3}=\emptyset$
Theorem 0.0.15 (Quadratic Reciprocity) If p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4} .
$$

