Some useful facts

Tam

I think these are some facts that make life easier if you know them.

0. The chain rule exists.

1. Let $f : \mathbb{R}^n \to \mathbb{R}$. If you want to compute the directional derivative $D_v f$ at points where the function is differentiable, use 2.20, DON'T use the definition. That is, compute the gradient ∇f and “dot” it with the vector v.

2. If you are given an explicit expression f in terms of x and want to show that it is differentiable at some point, try computing the partial derivatives first and see if they are continuous. If so, then f is differentiable by 2.23. DON'T try to guess an explicit linear map (transformation) and show that it satisfies the definition of the derivative.

3. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. As in the one variable case, the derivative does not change if we add a constant vector $v \in \mathbb{R}^m$ to f.

 Proof. We define $g(x) = f(x) + v$. Then $Dg(x) = D(f + v)(x) = Df(x) + Dv(x) = Df(x) + 0$ since $Dv = 0$ because v is a constant (vector-valued) function. \hfill \Box

4. Let f be as in 3. and $w \in \mathbb{R}^n$. If $h(x) = f(x + w)$, then $Dh(x) = Df(x + w)$, or equivalently $Dh(x - w) = Df(x)$.

 Proof. We define $k(x) = x + w$. Then $h = f \circ k$. By the chain rule, $Dh(x) = Df(k(x)) \circ Dk(x) = Df(x + w) \circ I = Df(x + w)$ \hfill \Box

 (How does this apply to Jahnavi’s proof (some of the WLOG part) of theorem 4.1?)
5 If \(l : \mathbb{R}^n \to \mathbb{R}^n \) is a linear map, and \(h := f \circ l \), then \(Df(x) = Df(l(x)) \circ l(x) \).

Proof. (Sketch) Since \(l \) is a linear map, \(Dl = l \). Now apply the chain rule. \(\square \)

(This is why in Jahnavi’s proof of theorem 4.1 we can assume that \(\nabla g_1, \ldots, \nabla g_k \) span the subspace spanned by the first \(k \) vectors of the standard basis. This is because if they span different subspace, we can compose \(g_i \)'s with a rotation matrix and take this subspace to the standard one.)

6. Let \(V \) be a \(k \)-dim vector subspace of \(\mathbb{R}^n \) \((k \leq n)\) with an inner product. Then \(V^\perp := \{ u \in \mathbb{R}^n | u \cdot v = 0 \quad \forall v \in V \} \) is a \((n - k)\)-dim vector subspace and \(V \cap V^\perp = \{ 0 \} \) and \(\mathbb{R}^n = V \oplus V^\perp \).

Proof. You do linear algebra. \(\square \)