Sketch solutions to questions on connectedness

Let us write $a \sim b$ iff a is path-connected to b. Note that \sim is an equivalence relation.

4.5.35

(i),(ii) Let B be an open or closed ball in \mathbb{R}^{n} or \mathbb{C}^{n} with the usual metric. Then B is a convex set. Let $x, y \in B$. Define $p:[0,1] \rightarrow B$ by $p(t)=(1-t) x+t y$. (Note: this is a straight line path.) By convexity, p is a map into B. Since $p(0)=x, p(1)=y$, and p is a homeomorphism, then $x \sim y$. Since $x, y \in B$ were arbitrary, then B is path-connected. Therefore B is connected, as required.
(iii) Let $\mathrm{GL}^{+}(2, \mathbb{R})=\{M \in \mathrm{GL}(2, \mathbb{R}) \mid \operatorname{det}(M)>0\}$ and let $\mathrm{GL}^{-}(2, \mathbb{R})=\{M \in \mathrm{GL}(2, \mathbb{R}) \mid \operatorname{det}(M)<0\}$. Since the determinant function, det : $\mathbf{M}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$, is a continuous function, then $\operatorname{det}^{-1}((0, \infty))=$ $\mathrm{GL}^{+}(2, \mathbb{R})$ and $\operatorname{det}^{-1}((-\infty, 0))=\mathrm{GL}^{-}(2, \mathbb{R})$, are open sets. In fact, these sets disconnect $\mathrm{GL}(2, \mathbb{R})$. Check this.
(iv) We will show that $\mathrm{GL}(2, \mathbb{C})$ is path-connected. Let $A \in \mathrm{GL}(2, \mathbb{C})$ be arbitrary. Let U_{A} denote the upper triangular matrix corresponding to A. That is, U_{A} is constructed by performing elementary row operations on A until all elements below the diagonal are zero. It can be shown that for any $M \in \mathrm{GL}(2, \mathbb{C}), M \sim M^{\prime}$, where M^{\prime} is the result of applying one elementary row operation to M. It follows that $A \sim U_{A}$. Since $\mathbb{C} \backslash\{0\}$ is path-connected, then $U_{A} \sim I_{n}$, where $I_{n}=\operatorname{diag}(1, \ldots, 1)$. (Create a path from U_{A} to I_{n} by creating paths from each of the corresponding matrix elements. Use straightline paths on non-diagonal elements and paths that do not pass through zero on the diagonal elements. Such a path will alway remain in $\operatorname{GL}(2, \mathbb{C})$ since the determinant of an upper triangular matrix is equal to the product of the diagonal entries.) By transitivity, $A \sim I_{n}$. Since $A \in \mathrm{GL}(2, \mathbb{C})$ was arbitrary, it follows that $\mathrm{GL}(2, \mathbb{C})$ is path-connected and therefore connected.
4.5.39 $\mathrm{O}(n)=\left\{M \in \mathrm{GL}(n, \mathbb{R}) \mid M M^{T}=I_{n}\right\}$, where I_{n} denotes the identity matrix. Let $M \in \mathrm{O}(n)$. Since $1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(M M^{T}\right)=\operatorname{det}(M) \operatorname{det}\left(M^{T}\right)=\operatorname{det}(M) \operatorname{det}(M)$, then $\operatorname{det}(M) \in\{1,-1\}$. Let $\mathrm{O}(n)^{+}=\{M \in$ $\mathrm{O}(n) \mid \operatorname{det}(M)=1\}=\mathrm{GL}^{+}(n, R) \cap \mathrm{O}(n)$ and let $\mathrm{O}(n)^{-}=\{M \in \mathrm{O}(n) \mid \operatorname{det}(M)=-1\}=\mathrm{GL}^{-}(n, \mathbb{R}) \cap \mathrm{O}(n)$. Then $\mathrm{O}(n)^{+}$and $\mathrm{O}(n)^{-1}$ are open in the subspace topology and they disconnect $\mathrm{O}(n)$. Check this. $\operatorname{SO}(n)=\{M \in \mathrm{O}(n) \mid \operatorname{det}(M)=1\}$. Let $M \in \mathrm{SO}(n)$. Then $M=U D U^{T}$ where $U \in \operatorname{SO}(n)$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Without loss of generality, $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$. Since $\operatorname{det}(M)=1$, then there must be an even number of $\lambda_{i} \mathrm{~S}$ that are negative, say $\lambda_{1}, \ldots, \lambda_{2 k}$. Since \mathbb{R}^{+}and \mathbb{R}^{-}are path-connected, then $D \sim \operatorname{diag}(-1, \ldots,-1,1, \ldots, 1)$. It can be shown that $I_{2} \sim-I_{2}$ by showing that $I_{2} \sim N$ and $N \sim-I_{2}$, where

$$
N=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

It follows that $D \sim I_{n}$ and so $M \sim U I_{n} U^{T}=I_{n}$. Thus, $\mathrm{SO}(n)$ is path-connected and therefore connected.

