Sketch solutions to questions on connectedness

Let us write $a \sim b$ iff a is path-connected to b. Note that \sim is an equivalence relation.

4.5.35

- (i),(ii) Let *B* be an open or closed ball in \mathbb{R}^n or \mathbb{C}^n with the usual metric. Then *B* is a convex set. Let $x, y \in B$. Define $p: [0,1] \to B$ by p(t) = (1-t)x + ty. (Note: this is a straight line path.) By convexity, *p* is a map into *B*. Since p(0) = x, p(1) = y, and *p* is a homeomorphism, then $x \sim y$. Since $x, y \in B$ were arbitrary, then *B* is path-connected. Therefore *B* is connected, as required.
 - (iii) Let $GL^+(2,\mathbb{R}) = \{M \in GL(2,\mathbb{R}) | \det(M) > 0\}$ and let $GL^-(2,\mathbb{R}) = \{M \in GL(2,\mathbb{R}) | \det(M) < 0\}$. Since the determinant function, det : $M_2(\mathbb{R}) \to \mathbb{R}$, is a continuous function, then $\det^{-1}((0,\infty)) = GL^+(2,\mathbb{R})$ and $\det^{-1}((-\infty,0)) = GL^-(2,\mathbb{R})$, are open sets. In fact, these sets disconnect $GL(2,\mathbb{R})$. Check this.
 - (iv) We will show that $GL(2,\mathbb{C})$ is path-connected. Let $A \in GL(2,\mathbb{C})$ be arbitrary. Let U_A denote the upper triangular matrix corresponding to A. That is, U_A is constructed by performing elementary row operations on A until all elements below the diagonal are zero. It can be shown that for any $M \in GL(2,\mathbb{C}), M \sim M'$, where M' is the result of applying one elementary row operation to M. It follows that $A \sim U_A$. Since $\mathbb{C} \setminus \{0\}$ is path-connected, then $U_A \sim I_n$, where $I_n = \text{diag}(1, \ldots, 1)$. (Create a path from U_A to I_n by creating paths from each of the corresponding matrix elements. Use straight-line paths on non-diagonal elements and paths that do not pass through zero on the diagonal elements. Such a path will alway remain in $GL(2,\mathbb{C})$ since the determinant of an upper triangular matrix is equal to the product of the diagonal entries.) By transitivity, $A \sim I_n$. Since $A \in GL(2,\mathbb{C})$ was arbitrary, it follows that $GL(2,\mathbb{C})$ is path-connected and therefore connected.

4.5.39 $O(n) = \{M \in GL(n, \mathbb{R}) | MM^T = I_n\}$, where I_n denotes the identity matrix. Let $M \in O(n)$. Since $1 = \det(I_n) = \det(MM^T) = \det(M) \det(M^T) = \det(M) \det(M)$, then $\det(M) \in \{1, -1\}$. Let $O(n)^+ = \{M \in O(n) | \det(M) = 1\} = GL^+(n, R) \cap O(n)$ and let $O(n)^- = \{M \in O(n) | \det(M) = -1\} = GL^-(n, \mathbb{R}) \cap O(n)$. Then $O(n)^+$ and $O(n)^{-1}$ are open in the subspace topology and they disconnect O(n). Check this. $SO(n) = \{M \in O(n) | \det(M) = 1\}$. Let $M \in SO(n)$. Then $M = UDU^T$ where $U \in SO(n)$ and $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Without loss of generality, $\lambda_1 \le \lambda_2 \le \dots \le \lambda_n$. Since $\det(M) = 1$, then there must be an even number of λ_i s that are negative, say $\lambda_1, \dots, \lambda_{2k}$. Since \mathbb{R}^+ and \mathbb{R}^- are path-connected, then $D \sim \operatorname{diag}(-1, \dots, -1, 1, \dots, 1)$. It can be shown that $I_2 \sim -I_2$ by showing that $I_2 \sim N$ and $N \sim -I_2$, where

$$N = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

It follows that $D \sim I_n$ and so $M \sim UI_n U^T = I_n$. Thus, SO(*n*) is path-connected and therefore connected.