Math 208, Section 31: Honors Analysis II
Winter Quarter 2010
John Boller
Homework 3, Final Version
Due: Monday, January 25, 2010

1. (*) Read a good source on the Inverse and Implicit Function Theorems. Perhaps the BS notes, Rudin (Chapter 9), Edwards (Chapter 2), or Lang (Chapter 15).
2. Let V be a real vector space. A norm on V is a map $\|\cdot\|: V \rightarrow \mathbb{R}$ satisfying:
(a) $\|x\| \geq 0, \forall x \in V$ and $\|x\|=0$ iff $x=0$
(b) $\|c x\|=|c|\|x\|, \forall c \in \mathbb{R}, \forall x \in V$
(c) $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in V$

Two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on V are said to be equivalent if there exist real scalars $\alpha_{1}, \alpha_{2}>0$ such that $\alpha_{1}\|x\|_{1} \leq\|x\|_{2} \leq \alpha_{2}\|x\|_{1}$ for all $x \in V$.
(a) Show that any two norms on \mathbb{R}^{n} are equivalent.
(b) Show that there exist inequivalent norms on $\mathbb{R}^{\mathbb{N}}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R}, \forall i \in \mathbb{N}\right\}$.
3. Read Section 1.5 in the BS notes on Taylor's Theorem, and do Exercises (*) 1.5.4, 1.5.5, (*) 1.5.6, (*) 1.5.7, 1.5.10(i), and 1.5.11, and prove Taylor's Theorem 1.5.8.
4. Read Section 1.6 in the BS notes on Tangent Hyperplanes, and do Exercises $\left(^{*}\right)$ 1.6.2, 1.6.6, $\left(^{*}\right)$ 1.6.7, 1.6.8, and 1.6.9.
5. Read Section 1.7 in the BS notes on Max/Min Problems, and do Exercises $\left(^{*}\right)$ 1.7.5, 1.7.6, 1.7.7, and 1.7.8.
6. Read Section 1.8 in the BS notes on Lagrange Multipliers, and do Exercises $\left(^{*}\right)$ 1.8.5, 1.8.6, 1.8.7, 1.8.13, and (*) 1.8.14.

