Math 208, Section 31: Honors Analysis II
Winter Quarter 2010

John Boller

Homework 4, Final Version
Due: Monday, February 8, 2010

1. (*) Read a good source on the Riemann Integration in \mathbb{R}^{n}. Perhaps the BS notes, volume II, Apostol (Chapter 14), Edwards (Chapter 4), or Lang (Chapter 20).
2. Theorem (Hadamard) Let $X=\left[x_{i j}\right] \in M_{n} \mathbb{R}$. For each $i=1, \ldots, n$, let $X_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)$ be the i-th row of X, and let $d_{i}=\left\|X_{i}\right\|$. If $\Delta=\operatorname{det}(X)$, then $|\Delta| \leq d_{1} \cdots d_{n}$.
Prove this theorem using Lagrange's method by considering Δ as a function of n^{2} variables subject to n constraints. (Hint: Show that at the extrema of Δ, we have $\Delta^{2}=\operatorname{det}(D)$, where D is the diagonal matrix with diagonal entries $d_{1}^{2}, \ldots, d_{n}^{2}$.)
3. Let $A \in M_{n}(\mathbb{R})$ by symmetric, and suppose $\operatorname{det}(A) \neq 0$. Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic form defined by $q(x)=x^{t} A x$. For each $k=1, \ldots, n$, let $\Delta_{k}=\operatorname{det}\left(A_{k}\right)$, where A_{k} is the $k \times k$ submatrix of A obtained by deleting the last $n-k$ rows and the last $n-k$ columns of A.
(a) Show that q is positive-definite if and only if $\Delta_{k}>0$ for each $k=1, \ldots, n$.
(b) Show that q is negative-definite if and only if $(-1)^{k} \Delta_{k}>0$ for each $k=1, \ldots, n$.
4. Use our tools of optimization to classify the local extrema of the functions:
(a) $f(x, y)=x+x^{2}+x y+y^{3}$
(b) $g(x, y)=(x-1)^{4}+(x-y)^{4}$
5. State and prove a version of the Spectral Theorem for elements of $M_{n}(\mathbb{C})$.
6. (*) Read Sections 2.1-2.4 in the BS notes II and do all the exercises.
7. Read Section 2.5 in the BS notes II and do Exercises $\left(^{*}\right) 2.5 .5,\left(^{*}\right) 2.5 .6,2.5 .8,2.5 .10,\left(^{*}\right) 2.5 .12,\left(^{*}\right)$ 2.5.13, and 2.5.16.
8. Read Section 2.6 in the BS notes II, prove Theorems 2.6.1, 2.6.2, and 2.6.3 and Propositions (*) 2.6.4 and (*) 2.6.5.
9. Read Section 2.7 in the BS notes II and do Exercises $\left(^{*}\right) 2.7 .2,\left(^{*}\right) 2.7 .3,\left(^{*}\right) 2.7 .5,2.7 .7,2.7 .8$, and $\left({ }^{*}\right)$ 2.7.11.
10. $\left.{ }^{*}\right)$ Re-do any midterm problems you did not solve correctly the first time!
