Math 208, Section 31: Honors Analysis II Winter Quarter 2010 John Boller Homework 6, Version 2 Due: Monday, February 15, 2010

- (*) Read a good source on the Riemann Integration in ℝⁿ. Perhaps the BS notes, volume II, Apostol (Chapter 14), Edwards (Chapter 4), or Lang (Chapter 20).
- 2. Read Sections 2.8 and 2.9 in the BS notes II and prove Theorem 2.9.1.
- 3. Let $A \subset \mathbb{R}^n$ be a closed rectangle, and let $f : A \to \mathbb{R}$. We say that f is absolutely integrable on A provided that |f| is integrable on A.
 - (a) Prove that if f is integrable on A, then f is absolutely integrable on A.
 - (b) Prove by example that the converse to (a) is false.
 - (c) Prove that if f is integrable on A, then $|\int_A f| \leq \int_A |f|$.
- 4. Let $A \subset \mathbb{R}^n$ be a closed rectangle, and let $f : A \to \mathbb{R}$ be a bounded function. Prove $B_{\varepsilon} = \{x \in A \mid o(f, x) \ge \varepsilon\}$ is compact.
- 5. If $A \subset \mathbb{R}^{n-1}$ and $c \in \mathbb{R}$, show that $B = A \times \{c\}$ is a set of measure zero in \mathbb{R}^n .
- 6. Define a set $A \subset \mathbb{R}^n$ to be *negligible* if, for any $\varepsilon > 0$, there exists a finite collection $\{U_i\}_{i=1}^k$ of closed rectangles such that $A \subset \bigcup_{i=1}^n U_i$ and $\sum_{i=1}^n v(U_i) < \varepsilon$.
 - (a) (*) Prove that the Cantor set is negligible.
 - (b) Prove that if A is compact and has measure zero, then A is negligible.
 - (c) Prove that if $A \subset \mathbb{R}^{n-1}$ is bounded and $c \in \mathbb{R}$, then $B = A \times \{c\}$ is negligible in \mathbb{R}^n . Prove that the boundedness condition on A is necessary for this result.
 - (d) Let $A \subset \mathbb{R}^n$ be negligible, let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function satisfying the Lipschitz condition $|f(x) f(y)| \leq C|x y|$ for some constant C > 0. Show that f(A) is negligible.
- 7. Let $D = \{(x, y) \mid 0 \le x \le y \le 1\} \subset \mathbb{R}^2$, and consider $f : D \to \mathbb{R}$ given by $f(x, y) = \sin(y^2)$. Compute $\int_D f$ by computing both iterated integrals.
- 8. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be positive and continuous, and suppose that

$$\int_D f = \int_0^1 \left(\int_y^{\sqrt{2-y^2}} f(x,y) \, dx \right) \, dy.$$

Sketch the region D and interchange the order of integration.

- 9. For a function $f : [0,1] \longrightarrow \mathbb{R}$, let $A = \{x \in [0,1] \mid f \text{ is not differentiable at } x\}$. Find (with proof) such an f satisfying the following conditions:
 - f is continuous.
 - f(0) = 0
 - f(1) = 1
 - A is negligible. (See question 6.)
 - If $x \notin A$, then f'(x) = 0.

- 10. Let $B = \{n \in \mathbb{N} \mid \text{the decimal expansion of } n \text{ has no 8's}\}$. Decide whether the infinite series $\sum_{n \in B} \frac{1}{n}$ converges or diverges.
- 11. Let $A \subset \mathbb{R}^n$ be a set of measure zero, and let $f : \mathbb{R}^n \to \mathbb{R}^n$.
 - (a) If f is continuous, decide (with proof) whether or not it is not necessarily true that f(A) has measure zero.
 - (b) If f is a homeomorphism, decide (with proof) whether or not it is not necessarily true that f(A) has measure zero.
- 12. Let $B^n \subset \mathbb{R}^n$ be the unit ball, that is, $B^n = \{x \in \mathbb{R}^n \mid ||x|| \leq 1\}$. Use the following exercises to show in two different ways that that the volume of B^n is given by the two formulas:

$$v(B^{2n}) = \frac{\pi^n}{n!}$$
 and $v(B^{2n+1}) = \frac{2^{n+1}\pi^n}{1\cdot 3\cdot 5\cdots (2n+1)}$

(a) Let $B^2 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1\}$, and let $Q = \{(x_3, \dots, x_n) \in \mathbb{R}^{n-2} \mid |x_i| \leq 1, \forall i\}$. Then $B^n \subset B^2 \times Q$. Let $\varphi : B^2 \times Q \to \mathbb{R}$ be the characteristic function of B^n . Note that this implies that

$$v(B^n) = \int_{B^2} \left(\int_Q \varphi(x_1, \dots, x_n) \, dx_3 \dots dx_n \right) dx_1 \, dx_2.$$

i. Show that, for a fixed $(x_1, x_2) \in \mathbb{R}^2$, the inner integral is

$$\int_{Q} \varphi(x_1, \dots, x_n) \, dx_3 \dots dx_n = (1 - x_1^2 - x_2^2)^{(n-2)/2} \cdot v(B^{n-2}).$$

- ii. Use polar coordinates to show that $\int_{B^2} (1 x_1^2 x_2^2)^{(n-2)/2} dx_1 dx_2 = \frac{2\pi}{n}$.
- iii. Show that $v(B^n) = \frac{2\pi}{n} \cdot v(B^{n-2})$ for $n \ge 2$.
- iv. Prove the given formulas by induction after establishing that $v(B^1) = 2$ and $v(B^2) = \pi$.
- (b) The *n*-dimensional spherical coordinate change of variables is given by $T: \mathbb{R}^n \to \mathbb{R}^n$, where:

$$\begin{array}{rcl} x_1 & = & \rho \cos \varphi_1 \\ x_2 & = & \rho \sin \varphi_1 \cos \varphi_2 \\ x_3 & = & \rho \sin \varphi_1 \sin \varphi_2 \cos \varphi_3 \\ & \vdots \\ x_{n-1} & = & \rho \sin \varphi_1 \cdots \sin \varphi_{n-2} \cos \theta \\ x_n & = & \rho \sin \varphi_1 \cdots \sin \varphi_{n-2} \sin \theta \end{array}$$

which maps the rectangle $R = \{(\phi, \varphi_1, \dots, \varphi_{n-2}, \theta) \in \mathbb{R}^n \mid \rho \in [0, 1], \varphi_i \in [0, \pi], \theta \in [0, 2\pi]\}$ onto the unit ball B^n .

i. Prove by induction that $|\det JT| = \rho^{n-1} \sin^{n-2} \varphi_1 \sin^{n-3} \varphi_2 \cdots \sin^2 \varphi_{n-3} \sin \varphi_{n-2}$.

ii. Show that
$$v(B^n) = \int_{B^n} 1 = \int_Q |\det JT| = \frac{2\pi}{n} \prod_{k=1}^{n-2} \left[\int_0^\pi \sin^k \varphi \, d\varphi \right].$$

iii. Show that this last formula gives the stated result.