1. (*) Read Kolmogorov and Fomin, Chapter 7.

2. Let \(X \) be a set. A \(\sigma \)-algebra is a collection of subsets of \(X \) that contains the empty set and is closed under countable unions and complementation.
 (a) (*) Show that a \(\sigma \)-algebra is closed under set difference and countable intersection.
 (b) (*) Show that a non-empty collection of sets that contains the empty set and is closed under countable intersection and complementation is a \(\sigma \)-algebra.
 (c) Is it possible for a \(\sigma \)-algebra to be a countably infinite set? Explain.

3. Let \(X \) be a set, and let \(\mathcal{M} \) be a \(\sigma \)-algebra on \(X \). A measure on \(X \) is a function \(\mu : \mathcal{M} \to [0, \infty] \) that is countably additive.
 (a) Let \(X = \mathbb{Z} \), and let \(\mathcal{M} = \mathcal{P}(\mathbb{Z}) \). Show that \(\mu(A) = |A| \) defines a measure on \(X \). (This is called the counting measure.)
 (b) Show that if \(A, B \in \mathcal{M} \) and \(A \subset B \), then \(\mu(A) \leq \mu(B) \).
 (c) Show that if \(A_1, A_2, \ldots \in \mathcal{M} \) and \(A_1 \subset A_2 \subset \cdots \), then \(\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_i) \).

4. Show that if \(E \subset B \) and \(B \in \mathcal{L}(\mathbb{R}) \) with \(m(B) < \infty \), then \(E \in \mathcal{L}(\mathbb{R}) \) if and only if \(m(B) = m^*(E) + m^*(B \setminus E) \).

5. Show that if \(A \in \mathcal{L}(\mathbb{R}) \), then there exist \(B \in \mathcal{B}(\mathbb{R}) \) and \(N \in \mathcal{N}(\mathbb{R}) \) such that \((A \setminus B) \cup (B \setminus A) = N \).

6. Let \(A \subset (a, b) \subset \mathbb{R} \) be a bounded set. Show that \(m((a, b)) = m_*(A) + m^*((a, b) \setminus A) \).

7. Let \(n \geq 2 \), and consider \(\mathbb{R}^n \). A set \(R = I_1 \times \cdots \times I_n \subset \mathbb{R}^n \) is called a half-open rectangle if each \(I_i = [a_i, b_i) \) for some \(a_i < b_i \), and the volume of \(R \) is defined to be \(m(R) = \prod_{i=1}^{n} (b_i - a_i) \). We define the Lebesgue outer measure of a set \(A \subset \mathbb{R}^n \) to be \(m^*(A) = \inf \{ \sum_{i \in I} m(R_i) \} \) where \(\{R_i\}_{i \in I} \) is an at most countable covering of \(A \) by half-open rectangles. We say that a set \(A \subset \mathbb{R}^n \) is Lebesgue measurable if, given any \(E \subset \mathbb{R}^n \), we have \(m^*(E) = m^*(E \cap A) + m^*(E \setminus A) \).
 (a) Show that every open set in \(\mathbb{R}^n \) may be written as the countable disjoint union of half-open rectangles.
 (b) (*) Show that \(m^*(A) \) is defined for every subset \(A \subset \mathbb{R}^n \).
 (c) Show that if \(A \subset \mathbb{R}^n \) is a rectangle, then \(A \) is Lebesgue measurable.
 (d) Show that open sets in \(\mathbb{R}^n \) are Lebesgue measurable.

8. Show that the extended real line, that is, the set \(\overline{\mathbb{R}} = [-\infty, \infty] \) endowed with the order topology, is homeomorphic to the closed unit interval \([0, 1]\) and hence is a compact Hausdorff space. (Is this space \(T_4 \)? Is it metrizable?)

9. Show that if \(f : X \to Y \) is measurable function, then for every \(B \in \mathcal{B}(Y) \), the set \(f^{-1}(B) \) is measurable.

10. Let \(f : X \to \overline{\mathbb{R}} \) be a simple function written as \(f = \sum_{i=1}^{N} \alpha_i \chi_{A_i} \), where the \(\alpha_i \) are distinct.
 (a) Show that \(f \) is measurable if each \(A_i \) is measurable.
 (b) Give an example to illustrate the necessity of the distinctness of the \(\alpha_i \) in order to show that if \(f \) is measurable, then each \(A_i \) is measurable.

11. Let \(X \) be a measure space, and let \(f : X \to [0, \infty] \) be measurable. Show that there exists a sequence of simple, measurable functions \(\{f_n\}_{n=1}^{\infty} \) that converges pointwise almost everywhere to \(f \).