Math 207, Section 31: Honors Analysis I Autumn Quarter 2009 John Boller Homework 9, Version 3 Due: Wednesday, December 2, 2009

- 1. (*) Read Kolmogorov and Fomin, Chapter 4.
- 2. (*) Read Sally, Chapter 5, especially Section 4.
- Sally, Section 5.4, Exercises (*) 5.4.2, (*) 5.4.3, 5.4.5, (*) 5.4.8, 5.4.10, (*) 5.4.16, 5.4.17, 5.4.18, 5.4.19, (*) 5.4.20, (*) 5.4.21.
- 4. Let $O_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid A^t A = I\}$ be the orthogonal group of $n \times n$ real matrices.
 - (a) Show that $A \in O_n(\mathbb{R})$ if and only if $\langle Ax, Ay \rangle = \langle x, y \rangle, \forall x, y \in \mathbb{R}^n$.
 - (b) Show that $A \in O_n(\mathbb{R})$ if and only if $||Ax|| = ||x||, \forall x \in \mathbb{R}^n$.
 - (c) Show that $A \in O_n(\mathbb{R})$ if and only if the columns of A form an orthonormal basis for \mathbb{R}^n .
 - (d) Show that $O_n(\mathbb{R})$ is compact.
- 5. (Iwasawa Decomposition)

Let $G = GL_n(F)$ for $F = \mathbb{R}$ or \mathbb{C} . Let $K = O_n(\mathbb{R})$ or $U_n(\mathbb{C})$ when $F = \mathbb{R}$ or \mathbb{C} , respectively. Let $A = \{[\alpha_{ij}] \in G \mid \alpha_{ij} = 0 \text{ when } i \neq j\}$ be the diagonal matrices. Let $N = \{[\alpha_{ij}] \in G \mid \alpha_{ii} = 1, \forall i, \text{ and } \alpha_{ij} = 0 \text{ when } i > j\}$ be the unipotent upper-triangular matrices. Show that G = KAN.

6. (Diagonalizable Matrices)

A matrix $D = [\delta_{ij}] \in M_n(F)$ is diagonal if $\delta_{ij} = 0$ whenever $i \neq j$. A matrix $A \in M_n(F)$ is said to be diagonalizable if there exists $S \in GL_n(F)$ such that $D = SAS^{-1}$ is a diagonal matrix.

- (a) Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is not diagonalizable as an element of $GL_2(\mathbb{R})$.
- (b) Show that $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is diagonalizable as an element of $GL_2(\mathbb{C})$.
- (c) Show that $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable as an element of $GL_2(F)$ for any F.
- (d) Determine whether the set of diagonalizable matrices in $GL_2(\mathbb{R})$ is open, closed, or neither.
- 7. Let $V = F^n$ be a vector space, and let $L: V \to V$ be a linear transformation with matrix $A \in M_n(F)$ with respect to the standard basis. A scalar $\lambda \in F$ is called an *eigenvalue* of A (and of L) if there exists a non-zero vector $v \in V$ such that $Av = \lambda v$. If λ is an eigenvalue of A, then any $v \in V$ satisfying $Av = \lambda v$ is called a corresponding *eigenvector*, and the collection of all such vectors $E_{\lambda} = \{v \in V \mid Av = \lambda v\}$ is called the *eigenspace* of λ . The *characteristic polynomial* of A is the polynomial $p_A(\lambda) = det(A - \lambda I)$.
 - (a) Show that $\lambda \in F$ is an eigenvalue of A if and only if $p_A(\lambda) = 0$.
 - (b) Show that if $\mathbf{v}_1, \ldots, \mathbf{v}_m$ are non-zero eigenvectors for A with *distinct* eigenvalues $\lambda_1, \ldots, \lambda_m$, respectively, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is linearly independent.
 - (c) Show that if $B = SAS^{-1}$ for some $S \in GL_n(F)$, then B has precisely the same set of eigenvalues as A.
 - (d) Show that if A has n distinct eigenvalues, then A is diagonalizable.

8. Let F be a field, and let k = F(t) be the field of rational functions with coefficients in F. Define a valuation on the non-zero elements of k by $v : k \to \mathbb{Z}$ with $v(a(t)/b(t)) = \deg(b) - \deg(a)$ and an absolute value $|\cdot| : k \to \mathbb{R}$ by $|a(t)/b(t)| = e^{-v(a(t)/b(t))}$ and |0| = 0.

Show that $|\cdot|$ defines a non-Archimedean absolute value on k.

- 9. Show that a non-Archimedean field is totally disconnected.
- 10. Fix a prime $p \in \mathbb{Z}$, and consider the *p*-adic field \mathbb{Q}_p .

Let $x \in \mathbb{Q}_p$, and suppose that $x = \sum_{k=val(x)}^{\infty} a_k p^k$ is its *p*-adic expansion.

- (a) Show that the *p*-adic expansion of x repeats if and only if $x \in \mathbb{Q}$.
- (b) If $x \in \mathbb{Q}$ with $x = \frac{a}{b}$ in lowest terms, determine the length of the repeating part of the *p*-adic expansion of x in terms of a, b, and p.