Math 207, Section 31: Honors Analysis I
Autumn Quarter 2009
John Boller
Homework 9, Version 3
Due: Wednesday, December 2, 2009

1. $\left(^{*}\right)$ Read Kolmogorov and Fomin, Chapter 4.
2. (*) Read Sally, Chapter 5, especially Section 4.
3. Sally, Section 5.4, Exercises (*) 5.4.2, (*) 5.4.3, 5.4.5, (*) 5.4.8, 5.4.10, (*) 5.4.16, 5.4.17, 5.4.18, 5.4.19, (*) 5.4.20, (*) 5.4.21.
4. Let $O_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}) \mid A^{t} A=I\right\}$ be the orthogonal group of $n \times n$ real matrices.
(a) Show that $A \in O_{n}(\mathbb{R})$ if and only if $\langle A x, A y\rangle=\langle x, y\rangle, \forall x, y \in \mathbb{R}^{n}$.
(b) Show that $A \in O_{n}(\mathbb{R})$ if and only if $\|A x\|=\|x\|, \forall x \in \mathbb{R}^{n}$.
(c) Show that $A \in O_{n}(\mathbb{R})$ if and only if the columns of A form an orthonormal basis for \mathbb{R}^{n}.
(d) Show that $O_{n}(\mathbb{R})$ is compact.
5. (Iwasawa Decomposition)

Let $G=G L_{n}(F)$ for $F=\mathbb{R}$ or \mathbb{C}.
Let $K=O_{n}(\mathbb{R})$ or $U_{n}(\mathbb{C})$ when $F=\mathbb{R}$ or \mathbb{C}, respectively.
Let $A=\left\{\left[\alpha_{i j}\right] \in G \mid \alpha_{i j}=0\right.$ when $\left.i \neq j\right\}$ be the diagonal matrices.
Let $N=\left\{\left[\alpha_{i j}\right] \in G \mid \alpha_{i i}=1, \forall i\right.$, and $\alpha_{i j}=0$ when $\left.i>j\right\}$ be the unipotent upper-triangular matrices. Show that $G=K A N$.
6. (Diagonalizable Matrices)

A matrix $D=\left[\delta_{i j}\right] \in M_{n}(F)$ is diagonal if $\delta_{i j}=0$ whenever $i \neq j$. A matrix $A \in M_{n}(F)$ is said to be diagonalizable if there exists $S \in G L_{n}(F)$ such that $D=S A S^{-1}$ is a diagonal matrix.
(a) Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is not diagonalizable as an element of $G L_{2}(\mathbb{R})$.
(b) Show that $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is diagonalizable as an element of $G L_{2}(\mathbb{C})$.
(c) Show that $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable as an element of $G L_{2}(F)$ for any F.
(d) Determine whether the set of diagonalizable matrices in $G L_{2}(\mathbb{R})$ is open, closed, or neither.
7. Let $V=F^{n}$ be a vector space, and let $L: V \rightarrow V$ be a linear transformation with matrix $A \in M_{n}(F)$ with respect to the standard basis. A scalar $\lambda \in F$ is called an eigenvalue of $A($ and of L) if there exists a non-zero vector $v \in V$ such that $A v=\lambda v$. If λ is an eigenvalue of A, then any $v \in V$ satisfying $A v=\lambda v$ is called a corresponding eigenvector, and the collection of all such vectors $E_{\lambda}=\{v \in V \mid A v=\lambda v\}$ is called the eigenspace of λ. The characteristic polynomial of A is the polynomial $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)$.
(a) Show that $\lambda \in F$ is an eigenvalue of A if and only if $p_{A}(\lambda)=0$.
(b) Show that if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ are non-zero eigenvectors for A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, respectively, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is linearly independent.
(c) Show that if $B=S A S^{-1}$ for some $S \in G L_{n}(F)$, then B has precisely the same set of eigenvalues as A.
(d) Show that if A has n distinct eigenvalues, then A is diagonalizable.
8. Let F be a field, and let $k=F(t)$ be the field of rational functions with coefficients in F. Define a valuation on the non-zero elements of k by $v: k \rightarrow \mathbb{Z}$ with $v(a(t) / b(t))=\operatorname{deg}(b)-\operatorname{deg}(a)$ and an absolute value $|\cdot|: k \rightarrow \mathbb{R}$ by $|a(t) / b(t)|=e^{-v(a(t) / b(t)}$ and $|0|=0$.
Show that $|\cdot|$ defines a non-Archimedean absolute value on k.
9. Show that a non-Archimedean field is totally disconnected.

10 . Fix a prime $p \in \mathbb{Z}$, and consider the p-adic field \mathbb{Q}_{p}.
Let $x \in \mathbb{Q}_{p}$, and suppose that $x=\sum_{k=v a l(x)}^{\infty} a_{k} p^{k}$ is its p-adic expansion.
(a) Show that the p-adic expansion of x repeats if and only if $x \in \mathbb{Q}$.
(b) If $x \in \mathbb{Q}$ with $x=\frac{a}{b}$ in lowest terms, determine the length of the repeating part of the p-adic expansion of x in terms of a, b, and p.

