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1. (*) Read Kolmogorov and Fomin, Chapter 8.

2. (*) Prove that if 0 ≤ f ≤ g for measurable functions f, g : X → [0,∞], then 0 ≤
∫

X
f dµ ≤

∫
X

g dµ.

3. (*) Prove that if f : X → [0,∞] is measurable and c ≥ 0, then cf : X → [0,∞] is measurable, and∫
X

cf dµ = c
∫

X
f dµ.

4. (*) Prove that if f, g : X → [0,∞] are measurable, then
∫

X
(f + g) dµ =

∫
X

f dµ +
∫

X
g dµ.

5. Let R ⊂ Rn be a rectangle. Show that if f : R → R is Riemann integrable on R, then f is Lebesgue
integrable on R and the values of the two integrals coincide.

6. Prove that if f : X → C ∪ {∞} is integrable, then |
∫

X
f dµ| ≤

∫
X
|f | dµ.

(Hint: Choose c ∈ C such that |c| = 1 and |
∫

X
f dµ| =

∫
X

cf dµ.)

7. Let E ⊂ X be a measurable set, and let f : E → C ∪ {∞} be a measurable function. Show that∫
E
|f(x)| dµ = 0 if and only if f(x) = 0 almost everywhere on E.

8. Let (X,M, µ) be a measure space, and let f : X → C ∪ {∞} be an integrable function. Show that:
given ε > 0, there exists δ > 0 such that if A ∈M satisfies µ(A) < δ, then

∫
A
|f | dµ < ε.

9. Let X be a metric space and µ a regular Borel measure on X. Given an integrable function f : X → C
and an ε > 0, show that there exists φ ∈ Cc(X; C) such that

∫
X
|f − φ| dµ < ε.

Recall that the support of a function is defined to be the closure of the set A = {x ∈ X | f(x) 6= 0}
and that Cc(X; C) = {f : X → C | f is continuous and has compact support}.

10. If f : Rn → C is integrable, show that
∫

Rn |f(x + y)− f(x)| dm −→ 0 as y → 0.

Recall that if 1 ≤ p < ∞, we define Lp(Rn) = {f : Rn → C |
∫

Rn |f |p dm < ∞} (or as equivalence
classes of such functions where two functions are equivalent if they differ only on a set of measure zero). If
f ∈ Lp(Rn, we define ||f ||p = (

∫
Rn |f |p dm)1/p.

11. If f, g ∈ L1(R), their convolution is the function f ∗ g : R → R given by (f ∗ g)(x) =
∫

R f(t)g(x− t) dt.

(a) Show that f ∗ g ∈ L1(R).

(b) Show that convolution is commutative and associative on L1(R).

12. Let f ∈ L1(R), let g ∈ Lp(R), and define f ∗ g by the same formula as above.

(a) Show that f ∗ g ∈ Lp(R).

(b) Show that for a fixed f ∈ L1(R), the map g 7→ f ∗ g is a bounded linear operator on Lp(R) whose
norm is ||f ||1.

13. Assume 1 ≤ p < q ≤ ∞. Let m be Lebesgue measure on R.

(a) Find a function f that is in Lp(R,m) but not Lq(R,m).

(b) Find a function g that is in Lq(R,m) but not Lp(R,m).

(Hint: You might need separate examples for the case q = ∞.)

14. Show that L∞(µ) is a normed linear space with the essential supremum norm.



For the closed interval [a, b] ⊂ R, we define BV [a, b] = {f : [a, b] → R | V b
a f < ∞}, that is, the functions

of bounded variation on [a, b]. Here, we define V b
a f = supP

∑n
i=1 |f(xi) − f(xi−1)| where P runs over all

finite partitions a = x0 < x1 < · · · < xn = b.

15. Show that BV [a, b] is a normed linear space with norm ||f ||BV = |f(a)|+ V b
a f .

16. (a) Show that if g, h : [a, b] → R are non-decreasing, then g − h ∈ BV [a, b].

(b) Show that if f ∈ BV [a, b], then there exist g, h : [a, b] → R that are non-decreasing such that
f = g − h.

17. (a) Show that if f ∈ BV [a, b], then f is differentiable almost everywhere on [a, b].

(b) Show that if f ∈ BV [a, b], then f ′ ∈ L1([a, b]) and
∫ b

a
f ′ dm ≤ f(b)− f(a).

18. (a) If f ∈ L1([a, b]), define F (x) =
∫ x

a
f dm. Show that V b

a F ≤
∫ b

a
|f | dm and hence F ∈ BV [a, b].

(b) Show that if fn : [a, b] → R is a sequence of non-decreasing functions and f =
∑

fn pointwise
almost everywhere, then f ′ =

∑
f ′n almost everywhere.

(c) If f ∈ L1([a, b]) and F (x) =
∫ x

a
f dm, show that F ′(x) = f(x) for almost all x.

19. Show that if f : [a, b] → R is absolutely continuous, then f ∈ BV [a, b].

20. Show that if f : [a, b] → R is absolutely continuous and f ′ = 0 almost everywhere, then f is constant.


