Math 208, Section 31: Honors Analysis II
Winter Quarter 2010

John Boller

Homework 9, Version 3
Due: WEDNESDAY, March 10, 2010

1. (*) Read Kolmogorov and Fomin, Chapter $8 . ~_{\text {(}}$
2. $\left(^{*}\right)$ Prove that if $0 \leq f \leq g$ for measurable functions $f, g: X \rightarrow[0, \infty]$, then $0 \leq \int_{X} f d \mu \leq \int_{X} g d \mu$.
3. (*) Prove that if $f: X \rightarrow[0, \infty]$ is measurable and $c \geq 0$, then $c f: X \rightarrow[0, \infty]$ is measurable, and $\int_{X} c f d \mu=c \int_{X} f d \mu$.
4. (*) Prove that if $f, g: X \rightarrow[0, \infty]$ are measurable, then $\int_{X}(f+g) d \mu=\int_{X} f d \mu+\int_{X} g d \mu$.
5. Let $R \subset \mathbb{R}^{n}$ be a rectangle. Show that if $f: R \rightarrow \mathbb{R}$ is Riemann integrable on R, then f is Lebesgue integrable on R and the values of the two integrals coincide.
6. Prove that if $f: X \rightarrow \mathbb{C} \cup\{\infty\}$ is integrable, then $\left|\int_{X} f d \mu\right| \leq \int_{X}|f| d \mu$.
(Hint: Choose $c \in \mathbb{C}$ such that $|c|=1$ and $\left|\int_{X} f d \mu\right|=\int_{X} c f d \mu$.)
7. Let $E \subset X$ be a measurable set, and let $f: E \rightarrow \mathbb{C} \cup\{\infty\}$ be a measurable function. Show that $\int_{E}|f(x)| d \mu=0$ if and only if $f(x)=0$ almost everywhere on E.
8. Let (X, \mathcal{M}, μ) be a measure space, and let $f: X \rightarrow \mathbb{C} \cup\{\infty\}$ be an integrable function. Show that: given $\varepsilon>0$, there exists $\delta>0$ such that if $A \in \mathcal{M}$ satisfies $\mu(A)<\delta$, then $\int_{A}|f| d \mu<\varepsilon$.
9. Let X be a metric space and μ a regular Borel measure on X. Given an integrable function $f: X \rightarrow \mathbb{C}$ and an $\varepsilon>0$, show that there exists $\phi \in C_{c}(X ; \mathbb{C})$ such that $\int_{X}|f-\phi| d \mu<\varepsilon$.
Recall that the support of a function is defined to be the closure of the set $A=\{x \in X \mid f(x) \neq 0\}$ and that $C_{c}(X ; \mathbb{C})=\{f: X \rightarrow \mathbb{C} \mid f$ is continuous and has compact support $\}$.
10. If $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is integrable, show that $\int_{\mathbb{R}^{n}}|f(x+y)-f(x)| d m \longrightarrow 0$ as $y \rightarrow 0$.

Recall that if $1 \leq p<\infty$, we define $L^{p}\left(\mathbb{R}^{n}\right)=\left\{f:\left.\mathbb{R}^{n} \rightarrow \mathbb{C}\left|\int_{\mathbb{R}^{n}}\right| f\right|^{p} d m<\infty\right\}$ (or as equivalence classes of such functions where two functions are equivalent if they differ only on a set of measure zero). If $f \in L^{p}\left(\mathbb{R}^{n}\right.$, we define $\|f\|_{p}=\left(\int_{\mathbb{R}^{n}}|f|^{p} d m\right)^{1 / p}$.
11. If $f, g \in L^{1}(\mathbb{R})$, their convolution is the function $f * g: \mathbb{R} \rightarrow \mathbb{R}$ given by $(f * g)(x)=\int_{\mathbb{R}} f(t) g(x-t) d t$.
(a) Show that $f * g \in L^{1}(\mathbb{R})$.
(b) Show that convolution is commutative and associative on $L^{1}(\mathbb{R})$.
12. Let $f \in L^{1}(\mathbb{R})$, let $g \in L^{p}(\mathbb{R})$, and define $f * g$ by the same formula as above.
(a) Show that $f * g \in L^{p}(\mathbb{R})$.
(b) Show that for a fixed $f \in L^{1}(\mathbb{R})$, the map $g \mapsto f * g$ is a bounded linear operator on $L^{p}(\mathbb{R})$ whose norm is $\|f\|_{1}$.
13. Assume $1 \leq p<q \leq \infty$. Let m be Lebesgue measure on \mathbb{R}.
(a) Find a function f that is in $L^{p}(\mathbb{R}, m)$ but not $L^{q}(\mathbb{R}, m)$.
(b) Find a function g that is in $L^{q}(\mathbb{R}, m)$ but not $L^{p}(\mathbb{R}, m)$.
(Hint: You might need separate examples for the case $q=\infty$.)
14. Show that $L^{\infty}(\mu)$ is a normed linear space with the essential supremum norm.

For the closed interval $[a, b] \subset \mathbb{R}$, we define $B V[a, b]=\left\{f:[a, b] \rightarrow \mathbb{R} \mid V_{a}^{b} f<\infty\right\}$, that is, the functions of bounded variation on $[a, b]$. Here, we define $V_{a}^{b} f=\sup _{P} \sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|$ where P runs over all finite partitions $a=x_{0}<x_{1}<\cdots<x_{n}=b$.
15. Show that $B V[a, b]$ is a normed linear space with norm $\|f\|_{B V}=|f(a)|+V_{a}^{b} f$.
16. (a) Show that if $g, h:[a, b] \rightarrow \mathbb{R}$ are non-decreasing, then $g-h \in B V[a, b]$.
(b) Show that if $f \in B V[a, b]$, then there exist $g, h:[a, b] \rightarrow \mathbb{R}$ that are non-decreasing such that $f=g-h$.
17. (a) Show that if $f \in B V[a, b]$, then f is differentiable almost everywhere on $[a, b]$.
(b) Show that if $f \in B V[a, b]$, then $f^{\prime} \in L^{1}([a, b])$ and $\int_{a}^{b} f^{\prime} d m \leq f(b)-f(a)$.
18. (a) If $f \in L^{1}([a, b])$, define $F(x)=\int_{a}^{x} f d m$. Show that $V_{a}^{b} F \leq \int_{a}^{b}|f| d m$ and hence $F \in B V[a, b]$.
(b) Show that if $f_{n}:[a, b] \rightarrow \mathbb{R}$ is a sequence of non-decreasing functions and $f=\sum f_{n}$ pointwise almost everywhere, then $f^{\prime}=\sum f_{n}^{\prime}$ almost everywhere.
(c) If $f \in L^{1}([a, b])$ and $F(x)=\int_{a}^{x} f d m$, show that $F^{\prime}(x)=f(x)$ for almost all x.
19. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous, then $f \in B V[a, b]$.
20. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous and $f^{\prime}=0$ almost everywhere, then f is constant.

