Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 3
Due: Friday, January 23, 2009

1. $\left(^{*}\right)$ Read Dummit and Foote, Sections 7.5 and 8.1-8.3.
2. $\left(^{*}\right)$ Dummit and Foote, Section $7.5, \# 1,2$, and 3 (including going back to read $7.3 \# 26$).
3. Adopt the notation of Theorem 15.
(a) Show that if D is a subset of the group of units in R, then Q is isomorphic to R.
(b) Show that the construction in Theorem 15 yields no "new" rings if R is finite.
4. Dummit and Foote, Section 7.5, \# 4:

Prove that any subfield of \mathbb{R} contains \mathbb{Q}.
5. Dummit and Foote, Section 7.5, \# 5:

If F is a field, prove that the field of fractions of $F[[x]]$, the ring of formal power series in x with coefficients in F, is $F((x))$, the ring of formal Laurent series in x with coefficients in F.
6. Let R be the set of all $f \in \mathbb{Q}[x]$ such that $f(x) \in \mathbb{Z}$ for all $x \in \mathbb{Z}$.
(a) Prove that R is a subring of $\mathbb{Q}[x]$.
(b) Define, for a positive integer r :

$$
\binom{x}{r}=\frac{x(x-1)(x-2) \ldots(x-r+1)}{r!}
$$

Prove that $\binom{x}{r} \in R$ for any positive integer r.
(c) Prove that $\mathbb{Z}[x]$ is a proper subring of R.
(d) Prove that the ideal (x) in R is not a prime ideal in R.
7. Suppose R is a commutative ring with 1 . Let $S=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n}$ define:

$$
\varphi_{a}: S \rightarrow S
$$

by:

$$
\varphi_{a}\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=f\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{n}-a_{n}\right)
$$

(a) Prove that φ_{a} is an automorphism of S for all $a \in R^{n}$.
(b) Consider the map from R^{n} to $\operatorname{Aut}(S)$ given by:

$$
a \mapsto \varphi_{a}
$$

Prove that this map is a group homomorphism from the additive group of R^{n} to the multiplicative group $\operatorname{Aut}(S)$.
8. (*) Dummit and Foote, Section 8.1, \#1, 2, and 5.
9. Dummit and Foote, Section 8.1, \# 4:

Let R be a Euclidean domain.
(a) Prove that if $(a, b)=1$ and a divides $b c$, then a divides c. More generally, show that if some nonzero a divides $b c$, then $\frac{a}{(a, b)}$ divides c.
(b) Consider the Diophantine equation $a x+b y=N$ where $a, b, N \in \mathbb{Z}$ and a and b are non-zero. Suppose $\left(x_{0}, y_{0}\right)$ is a solution, that is, $a x_{0}+b y_{0}=N$. Prove that the full set of solutions to this equation is given by:

$$
x=x_{0}+m \frac{b}{(a, b)} \text { and } y=y_{0}-m \frac{a}{(a, b)}
$$

as m ranges over \mathbb{Z}.
10. Dummit and Foote, Section 8.1, \#8:

For quadratic fields $\mathbb{Q}(\sqrt{D})$, it is known that $D=-1,-2,-3,-7,-11,-19,-43,-67$, and -163 are the only negative values of D for which every ideal in the quadratic integer ring \mathcal{O} is principal. Recall that $\mathcal{O}=\mathbb{Z}[\sqrt{D}]$ if $D \equiv 2,3(\bmod 4)$ and $\mathcal{O}=\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]$ if $D \equiv 1(\bmod 4)$ as developed in Section 7.1. Below, we determine which of these quadratic integer rings are Euclidean.
(a) Suppose $D=-1,-2,-3,-7$, or -11 .

Show that \mathcal{O} is Euclidean with respect to the norm N.
(b) Suppose $D=-43,-67$, or -163 .

Show that \mathcal{O} is not a Euclidean domain with respect to any norm.

