Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 4
Due: Friday, February 6, 2009

1. (*) Read Dummit and Foote, Sections 8.3-9.3.
2. (*) Dummit and Foote, Section 8.2, \#2-4.
3. Dummit and Foote, Section 8.2, \#5:

Let $R=\mathbb{Z}[\sqrt{-5}]$. Define the ideals $I_{2}=(2,1+\sqrt{-5}), I_{3}=(3,2+\sqrt{-5})$, and $I_{3}^{\prime}=(3,2-\sqrt{-5})$.
(a) Prove that I_{2}, I_{3}, and I_{3}^{\prime} are not principal ideals.
(b) Prove that the product of two non-principal ideals may be a principal ideal by showing that $I_{2}^{2}=(2)$.
(c) Prove that $I_{2} I_{3}=(1-\sqrt{-5})$ and $I_{2} I_{3}^{\prime}=(1+\sqrt{-5})$ are principal. Conclude that $I_{2}^{2} I_{3} I_{3}^{\prime}=(6)$.
4. Dummit and Foote, Section 8.2, \#6:

Let R be an integral domain, and suppose that every prime ideal in R is principal. This exercise shows that R must be a P.I.D.
(a) Assume that the set of ideals of R that are not principal is non-empty, and prove that this set has a maximal element under inclusion.
(b) Let I be an ideal which is maximal with respect to being non-principal, and let $a, b \in R$ with $a b \in I$ but with $a \notin I$ and $b \notin I$. Let $I_{a}=(I, a)$ be the ideal generated by I and a, let $I_{b}=(I, b)$ be the ideal generated by I and b, and define $J=\left\{r \in R \mid r I_{a} \subset I\right\}$. Prove that $I_{a}=(\alpha)$ and $J=(\beta)$ are principal ideals in R with $I \subset_{\neq} I_{b} \subset J$ and $I_{a} J=(\alpha \beta) \subset I$.
(c) If $x \in I$, show that $x=s \alpha$ for some $s \in J$. Deduce that $I=I_{a} J$ is principal, a contradiction.
5. Suppose R is an integral domain with Euclidean norm N satisfying the following two conditions:

- For any natural number n, the set $\{0\} \cup\{a \in R \mid N(a)<n\}$ is a subgroup of the additive group of R.
- For $a b \neq 0, N(a b) \geq \max \{N(a), N(b)\}$.

Then, prove that Euclidean division is unique with respect to N : in other words, prove that for any pair (a, b) with $b \neq 0$, there exists a unique pair (q, r) subject to the conditions $a=b q+r$ and $r=0$ or $N(r)<N(b)$.
6. Let k be a field. Let R the formal power series ring $k[[x]]$. Define N on $R \backslash\{0\}$ as follows: $N(f)$ is the smallest n for which the coefficient of x^{n} in f is nonzero.
(a) Prove that R is a Euclidean domain with Euclidean norm N.
(b) For $a, b, a+b$ nonzero elements of R, prove that $N(a+b)$ cannot be bounded as a function of $N(a)$ and $N(b)$.
(c) Prove that if a and b are two power series such that b does not divide a (and $b \neq 0$), there are infinitely many pairs (q, r) for which $a=b q+r$ and $N(r)<N(b)$.
7. Let R be a ring with 1 . For a a unit in R, consider the map:

$$
\varphi_{a}: x \mapsto a x a^{-1}
$$

(a) Prove that φ_{a} is an automorphism of R.
(b) Prove that the map $a \mapsto \varphi_{a}$ is a homomorphism from the multiplicative group of units in R to the automorphism group of R.
(c) Suppose the additive group of R is generated by all the multiplicative units. Prove that if L is a left ideal of R with the property that $\alpha(L) \subseteq L$ for all automorphisms α of R, then L is a two-sided ideal of R.
8. (a) Suppose R is an integral domain that is a Noetherian ring (i.e., every ideal in R is finitely generated). Prove that if r is a nonzero non-unit of R, we can write $r=u p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}$ where u is a unit and p_{i} are irreducible. (Hint: Imitate the proof for principal ideal domains).
(b) Suppose R is an integral domain. Prove that if a nonzero non-unit $r \in R$ can be written as $u p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}$ where all the p_{i} are prime and u is a unit, then any two factorizations of r into irreducibles are equal up to ordering and associates.
(c) Use parts (a) and (b) along with the fact that in a Bezout domain, every irreducible element is prime, to show that every principal ideal domain is a unique factorization domain.
9. Suppose \mathcal{O} is a quadratic integer ring, with N the algebraic norm. Prove that if a is a prime element of \mathcal{O}, then $|N(a)|$ is either prime (as a natural number) or the square of a prime. Give examples where $|N(a)|$ is prime and examples where $|N(a)|$ is the square of a prime.
10. Dummit and Foote, Section 8.3, \#5:

Let $R=\mathbb{Z}[\sqrt{-n}]$, where n is a square-free integer greater than 3 .
(a) Prove that $2, \sqrt{-n}$, and $1+\sqrt{-n}$ are irreducibles.
(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring \mathcal{O} is not a U.F.D. when $D \equiv 2,3(\bmod 4)$ and $D<-3$.
(c) Give an explicit ideal in R that is not principal.
11. (*) Dummit and Foote, Section 9.1, \#1-7, 9, and 16.
12. Dummit and Foote, Section 9.1, \#10:

Prove that the ring $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, \ldots\right] /\left(x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}, \ldots\right)$ contains infinitely many minimal prime ideals.
13. (*) * Dummit and Foote, Section 9.2, \#1-3, 6-10.
14. A combination of Dummit and Foote, Section 9.2, \#10, 11:

Let $f(x), g(x) \in \mathbb{Q}[x]$ be two non-zero polynomials, and let $d(x)$ be their gcd.
(a) Given $h(x) \in \mathbb{Q}[x]$, show that there are polynomials $a(x), b(x) \in \mathbb{Q}[x]$ such that $a(x) f(x)+$ $b(x) g(x)=h(x)$ if and only if $d(x)$ divides $h(x)$.
(b) If $a_{0}(x)$ and $b_{0}(x)$ are particular solutions to the equation in part (a), show that the full set of solutions is given by:

$$
\begin{aligned}
a(x) & =a_{0}(x)+m(x) \frac{g(x)}{d(x)} \\
b(x) & =b_{0}(x)-m(x) \frac{f(x)}{d(x)}
\end{aligned}
$$

as $m(x)$ ranges over all polynomials in $\mathbb{Q}[x]$.
(c) When $f(x)=x^{3}+4 x^{2}+x-6$ and $g(x)=x^{5}-6 x+5$, find $d(x)$ and at least one pair of solutions for $a_{0}(x)$ and $b_{0}(x)$ when $h(x)=d(x)$.

