
Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 4
Due: Friday, February 6, 2009

1. (*) Read Dummit and Foote, Sections 8.3–9.3.

2. (*) Dummit and Foote, Section 8.2, #2–4.

3. Dummit and Foote, Section 8.2, #5:

Let R = Z[
√
−5]. Define the ideals I2 = (2, 1 +

√
−5), I3 = (3, 2 +

√
−5), and I ′3 = (3, 2−

√
−5).

(a) Prove that I2, I3, and I ′3 are not principal ideals.

(b) Prove that the product of two non-principal ideals may be a principal ideal by showing that
I2
2 = (2).

(c) Prove that I2I3 = (1−
√
−5) and I2I

′
3 = (1 +

√
−5) are principal. Conclude that I2

2I3I
′
3 = (6).

4. Dummit and Foote, Section 8.2, #6:

Let R be an integral domain, and suppose that every prime ideal in R is principal. This exercise shows
that R must be a P.I.D.

(a) Assume that the set of ideals of R that are not principal is non-empty, and prove that this set
has a maximal element under inclusion.

(b) Let I be an ideal which is maximal with respect to being non-principal, and let a, b ∈ R with
ab ∈ I but with a 6∈ I and b 6∈ I. Let Ia = (I, a) be the ideal generated by I and a, let Ib = (I, b)
be the ideal generated by I and b, and define J = {r ∈ R | rIa ⊂ I}. Prove that Ia = (α) and
J = (β) are principal ideals in R with I ⊂6= Ib ⊂ J and IaJ = (αβ) ⊂ I.

(c) If x ∈ I, show that x = sα for some s ∈ J . Deduce that I = IaJ is principal, a contradiction.

5. Suppose R is an integral domain with Euclidean norm N satisfying the following two conditions:

• For any natural number n, the set {0} ∪ {a ∈ R | N(a) < n} is a subgroup of the additive group
of R.

• For ab 6= 0, N(ab) ≥ max{N(a), N(b)}.

Then, prove that Euclidean division is unique with respect to N : in other words, prove that for any
pair (a, b) with b 6= 0, there exists a unique pair (q, r) subject to the conditions a = bq + r and r = 0
or N(r) < N(b).

6. Let k be a field. Let R the formal power series ring k[[x]]. Define N on R \ {0} as follows: N(f) is the
smallest n for which the coefficient of xn in f is nonzero.

(a) Prove that R is a Euclidean domain with Euclidean norm N .

(b) For a, b, a + b nonzero elements of R, prove that N(a + b) cannot be bounded as a function of
N(a) and N(b).

(c) Prove that if a and b are two power series such that b does not divide a (and b 6= 0), there are
infinitely many pairs (q, r) for which a = bq + r and N(r) < N(b).

7. Let R be a ring with 1. For a a unit in R, consider the map:

ϕa : x 7→ axa−1



(a) Prove that ϕa is an automorphism of R.

(b) Prove that the map a 7→ ϕa is a homomorphism from the multiplicative group of units in R to
the automorphism group of R.

(c) Suppose the additive group of R is generated by all the multiplicative units. Prove that if L is
a left ideal of R with the property that α(L) ⊆ L for all automorphisms α of R, then L is a
two-sided ideal of R.

8. (a) Suppose R is an integral domain that is a Noetherian ring (i.e., every ideal in R is finitely
generated). Prove that if r is a nonzero non-unit of R, we can write r = upk1

1 . . . pkn
n where u is a

unit and pi are irreducible. (Hint: Imitate the proof for principal ideal domains).

(b) Suppose R is an integral domain. Prove that if a nonzero non-unit r ∈ R can be written as
upk1

1 . . . pkn
n where all the pi are prime and u is a unit, then any two factorizations of r into

irreducibles are equal up to ordering and associates.

(c) Use parts (a) and (b) along with the fact that in a Bezout domain, every irreducible element is
prime, to show that every principal ideal domain is a unique factorization domain.

9. Suppose O is a quadratic integer ring, with N the algebraic norm. Prove that if a is a prime element
of O, then |N(a)| is either prime (as a natural number) or the square of a prime. Give examples where
|N(a)| is prime and examples where |N(a)| is the square of a prime.

10. Dummit and Foote, Section 8.3, #5:

Let R = Z[
√
−n], where n is a square-free integer greater than 3.

(a) Prove that 2,
√
−n, and 1 +

√
−n are irreducibles.

(b) Prove that R is not a U.F.D. Conclude that the quadratic integer ring O is not a U.F.D. when
D ≡ 2, 3 (mod 4) and D < −3.

(c) Give an explicit ideal in R that is not principal.

11. (*) Dummit and Foote, Section 9.1, #1–7, 9, and 16.

12. Dummit and Foote, Section 9.1, #10:

Prove that the ring Z[x1, x2, x3, . . . ]/(x1x2, x3x4, x5x6, . . . ) contains infinitely many minimal prime
ideals.

13. (*) Dummit and Foote, Section 9.2, #1–3, 6–10.

14. A combination of Dummit and Foote, Section 9.2, #10, 11:

Let f(x), g(x) ∈ Q[x] be two non-zero polynomials, and let d(x) be their gcd.

(a) Given h(x) ∈ Q[x], show that there are polynomials a(x), b(x) ∈ Q[x] such that a(x)f(x) +
b(x)g(x) = h(x) if and only if d(x) divides h(x).

(b) If a0(x) and b0(x) are particular solutions to the equation in part (a), show that the full set of
solutions is given by:

a(x) = a0(x) + m(x)
g(x)
d(x)

b(x) = b0(x)−m(x)
f(x)
d(x)

as m(x) ranges over all polynomials in Q[x].

(c) When f(x) = x3 +4x2 +x− 6 and g(x) = x5− 6x+5, find d(x) and at least one pair of solutions
for a0(x) and b0(x) when h(x) = d(x).


