Math 258, Section 31: Honors Algebra II Winter Quarter 2009 John Boller Homework 5, Final Version Due: MONDAY, February 16, 2009

- 1. (*) Read Dummit and Foote, Sections 9.1–9.5.
- 2. (*) Dummit and Foote, Section 9.3, #2, 3.
- 3. (*) Dummit and Foote, Section 9.4, #1-4, 11-13, 18.
- 4. Find all irreducible monic polynomials of degree 4 or less in k[x] for:
 - (a) $k = \mathbb{Z}/2\mathbb{Z}$
 - (b) $k = \mathbb{Z}/3\mathbb{Z}$
- 5. A combination of Dummit and Foote, Section 9.2, #2 and 3, and Section 9.4, #6:
 - (a) Let k be a finite field of order q, and let $p(x) \in k[x]$ be a polynomial of degree $n \ge 1$. Show that k[x]/(p(x)) is a ring of order q^n that is a field iff p(x) is irreducible.
 - (b) Construct fields of order 7^2 , 7^3 , and 7^4 .
- 6. Dummit and Foote, Section 9.4, #14.

Factor the polynomials $x^8 - 1$ and $x^6 - 1$ into irreducibles when considered as elements of R[x] for:

- (a) $R = \mathbb{Z}$
- (b) $R = \mathbb{Z}/2\mathbb{Z}$
- (c) $R = \mathbb{Z}/3\mathbb{Z}$
- 7. Dummit and Foote, Section 9.4, #20.

Let $f(x) = x \in \mathbb{Z}/6\mathbb{Z}$.

- (a) Show that f(x) = (3x+4)(4x+3) and hence is not irreducible.
- (b) Show that the reduction of f(x) modulo both of the non-trivial ideals (2) and (3) is an irreducible polynomial and that, hence, the condition in Proposition 12 that R be an integral domain is necessary.
- (c) Show that in any factorization f(x) = g(x)h(x) in $\mathbb{Z}/6\mathbb{Z}$, the reduction of both g(x) or h(x) modulo (2) is either x or 1, and that the result is similar for reduction modulo (3). Determine all of the factorizations of f(x) in $\mathbb{Z}/6\mathbb{Z}$.
- (d) Show that f(x) = x ∈ Z/30Z has the factorization f(x) = (10x + 21)(15x + 16)(6x + 25). Prove that the product of any two of these factors is again of the same degree. Prove that the reduction of f(x) modulo any prime in Z/30Z is an irreducible polynomial. Determine all of the factorizations of f(x) = x in Z/30Z.
- 8. (a) Suppose R is an integral domain. Prove that R is infinite if and only if for every nonzero polynomial $f(x) \in R[x]$, there exists $a \in R$ such that $f(a) \neq 0$.
 - (b) Suppose R is an infinite integral domain and $n \ge 1$. Prove that for any nonzero polynomial $f(x_1, x_2, \ldots, x_n) \in R[x_1, x_2, \ldots, x_n]$, there exist $a_1, a_2, \ldots, a_n \in R$ such that $f(a_1, a_2, \ldots, a_n) \ne 0$.
 - (c) Suppose S is a non-empty set and $R = \mathcal{P}(S)$ denotes the ring of all functions from S to the ring $\mathbb{Z}/2\mathbb{Z}$, with pointwise addition and multiplication. Find a nonzero polynomial $f(x) \in R[x]$ such that f(a) = 0 for all $a \in R$.

- 9. Prove that the polynomial x^2+1 has uncountably many roots in the skew field $\mathbb H$ of Hamiltonian quaternions.
- 10. Dummit and Foote, Section 9.6, #1:

Let F be a field. Suppose I is an ideal in $F[x_1, \ldots, x_n]$ generated by a (possibly infinite) set S of polynomials. Prove that a finite subset of the polynomials in S suffice to generate I.