Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 5, Final Version
Due: MONDAY, February 16, 2009

1. (*) Read Dummit and Foote, Sections 9.1-9.5.
2. (*) Dummit and Foote, Section 9.3, \#2, 3.
3. (*) Dummit and Foote, Section 9.4, \#1-4, 11-13, 18.
4. Find all irreducible monic polynomials of degree 4 or less in $k[x]$ for:
(a) $k=\mathbb{Z} / 2 \mathbb{Z}$
(b) $k=\mathbb{Z} / 3 \mathbb{Z}$
5. A combination of Dummit and Foote, Section 9.2, \#2 and 3, and Section 9.4, \#6:
(a) Let k be a finite field of order q, and let $p(x) \in k[x]$ be a polynomial of degree $n \geq 1$. Show that $k[x] /(p(x))$ is a ring of order q^{n} that is a field iff $p(x)$ is irreducible.
(b) Construct fields of order $7^{2}, 7^{3}$, and 7^{4}.
6. Dummit and Foote, Section 9.4, \#14.

Factor the polynomials $x^{8}-1$ and $x^{6}-1$ into irreducibles when considered as elements of $R[x]$ for:
(a) $R=\mathbb{Z}$
(b) $R=\mathbb{Z} / 2 \mathbb{Z}$
(c) $R=\mathbb{Z} / 3 \mathbb{Z}$
7. Dummit and Foote, Section 9.4, \#20.

Let $f(x)=x \in \mathbb{Z} / 6 \mathbb{Z}$.
(a) Show that $f(x)=(3 x+4)(4 x+3)$ and hence is not irreducible.
(b) Show that the reduction of $f(x)$ modulo both of the non-trivial ideals (2) and (3) is an irreducible polynomial and that, hence, the condition in Proposition 12 that R be an integral domain is necessary.
(c) Show that in any factorization $f(x)=g(x) h(x)$ in $\mathbb{Z} / 6 \mathbb{Z}$, the reduction of both $g(x)$ or $h(x)$ modulo (2) is either x or 1 , and that the result is similar for reduction modulo (3). Determine all of the factorizations of $f(x)$ in $\mathbb{Z} / 6 \mathbb{Z}$.
(d) Show that $f(x)=x \in \mathbb{Z} / 30 \mathbb{Z}$ has the factorization $f(x)=(10 x+21)(15 x+16)(6 x+25)$. Prove that the product of any two of these factors is again of the same degree. Prove that the reduction of $f(x)$ modulo any prime in $\mathbb{Z} / 30 \mathbb{Z}$ is an irreducible polynomial. Determine all of the factorizations of $f(x)=x$ in $\mathbb{Z} / 30 \mathbb{Z}$.
8. (a) Suppose R is an integral domain. Prove that R is infinite if and only if for every nonzero polynomial $f(x) \in R[x]$, there exists $a \in R$ such that $f(a) \neq 0$.
(b) Suppose R is an infinite integral domain and $n \geq 1$. Prove that for any nonzero polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, there exist $a_{1}, a_{2}, \ldots, a_{n} \in R$ such that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq 0$.
(c) Suppose S is a non-empty set and $R=\mathcal{P}(\mathcal{S})$ denotes the ring of all functions from S to the ring $\mathbb{Z} / 2 \mathbb{Z}$, with pointwise addition and multiplication. Find a nonzero polynomial $f(x) \in R[x]$ such that $f(a)=0$ for all $a \in R$.
9. Prove that the polynomial $x^{2}+1$ has uncountably many roots in the skew field \mathbb{H} of Hamiltonian quaternions.
10. Dummit and Foote, Section 9.6, \#1:

Let F be a field. Suppose I is an ideal in $F\left[x_{1}, \ldots, x_{n}\right]$ generated by a (possibly infinite) set \mathcal{S} of polynomials. Prove that a finite subset of the polynomials in \mathcal{S} suffice to generate I.

