Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 6, Final Version
Due: MONDAY, February 23, 2009

1. (*) Read Dummit and Foote, Sections 11.1-11.4.
2. (*) Dummit and Foote, Section 11.1, \# 1-7.
3. (*) Show that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, then the representation of a given $v \in V$ as a linear combination of the basis elements is unique.
4. (*) If V and W are vector spaces and $L: V \rightarrow W$ is a linear map, show:
(a) $0 \cdot v=0, \forall v \in V$
(b) $(-1) \cdot v=-v, \forall v \in V$
(c) $L(0)=0$
(d) $L(-v)=-L(v), \forall v \in V$
(e) $\operatorname{Ker}(L)$ is a subspace of V
(f) $\operatorname{Im}(L)$ is a subspace of W
5. Let $F=\mathbb{F}_{q}$ be the finite field with q elements.
(a) Find, with proof, the number of 1-dimensional subspaces of $F^{n}(n \geq 1)$.
(b) Find, with proof, the number of 2-dimensional subspaces of $F^{n}(n \geq 2)$.
(c) Generalize to find, with proof, the number of m-dimensional subspaces of $F^{n}(n \geq m)$.
6. (a) Prove that every linear map $L: F^{2} \rightarrow F^{2}$ has the form

$$
L(x, y)=(\alpha x+\beta y, \gamma x+\delta y)
$$

for some constants $\alpha, \beta, \gamma, \delta \in F$.
(b) Prove that such a linear map is invertible iff $\alpha \delta-\beta \gamma \neq 0$.
7. (a) Prove that if $\operatorname{dim}(V)=\operatorname{dim}(W)<\infty$, then a linear map $L: V \rightarrow W$ is injective iff it is surjective.
(b) Show by example that the result if false if V and W are both infinite-dimensional.
8. (${ }^{*}$ Let V be a vector space over F and W a subspace of V.

We define the quotient space $V / W=\{v+W \mid v \in V\}$ with operations:

$$
\begin{gathered}
\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W \\
\alpha(v+W)=(\alpha v)+W
\end{gathered}
$$

(a) Show that these operations are well-defined and that, with them, V / W is a vector space over F.
(b) Read Dummit and Foote's Theorem 7 in Section 11.1.
(c) Prove the Vector Space Isomorphism Theorems:
i. (First) If $L: V \rightarrow W$ is linear, then $\operatorname{Im}(L) \cong V / \operatorname{Ker}(L)$.
ii. (Second) If V and W are subspaces of some vector space U, then $(V+W) / W \cong V /(V \cap W)$.
iii. (Third) If U is a subspace of W, which is in turn a subspace of V, then $(V / U)(W / U) \cong V / W$.
iv. (Fourth) If W is a subspace of V, then there is a bijection between the subspaces of V that contain W and the subspaces of V / W given by $U \leftrightarrow U / W$.
9. Suppose that $L: V \rightarrow W$ is a linear bijection. Prove that $L^{-1}: W \rightarrow V$ is linear.
10. Prove that any vector space has a basis.
11. Given two vector spaces V and W over the same field F, we define their direct sum to be

$$
V \oplus W=\{(v, w) \mid v \in V, w \in W\}
$$

with vector space operations given by:

$$
\begin{aligned}
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right) & =\left(v_{1}+v_{2}, w_{1}+w_{2}\right) \\
\alpha(v, w) & =(\alpha v, \alpha w)
\end{aligned}
$$

$\forall \alpha \in F, \forall v, v_{1}, v_{2} \in V, \forall w, w_{1}, w_{2} \in W$.
(a) $\left(^{*}\right)$ Prove that $V \oplus W$ is a vector space with these operations.
(b) $\left(^{*}\right)$ Prove that $U \oplus(V \oplus W) \cong(U \oplus V) \oplus W$.
(c) If V and W are subspaces of a common finite-dimensional vector space U, we define $V+W=$ $\{v+w \mid v \in V, w \in W\}$. It is easy to see that $V+W$ is a subspace of U. Prove that $V+W \cong V \oplus W$ iff $V \cap W=\{0\}$.
12. A linear transformation $P: V \rightarrow V$ is called a projection if $P^{2}=P$, where $P^{2}=P \circ P$. For a projection $P: V \rightarrow V$, let $E_{0}=\operatorname{Ker}(P)$ and $E_{1}=\{v \in V \mid P(v)=v\}$. Prove that $V \cong E_{0} \oplus E_{1}$.
13. $\left(^{*}\right)$ (Sorry, out of order, but I had a request not to put new problems at the front of the list.)
(a) Show that $f(x)=x^{3}+3 x^{2}-8$ is irreducible in $\mathbb{Q}[x]$.
(b) Show that $f(x)=x^{4}-22 x^{2}+1$ is irreducible in $\mathbb{Q}[x]$.
(c) Decide whether or not $f(x)=x^{6}-12$ is irreducible in $\mathbb{Q}[x]$.
(d) Decide whether or not $f(x)=2 x^{7}-25 x^{3}+10 x-30$ is irreducible in $\mathbb{Q}[x]$.
14. Show that $f(x)=x^{4}-2 x^{2}+9$ is irreducible in $\mathbb{Q}[x]$ but that there is no $c \in \mathbb{Z}$ such that $f(x+c)$ satisfies Eisenstein's criterion.
15. Let V and W be finite-dimensional vector spaces over F. Prove that

$$
\operatorname{dim}\left(\operatorname{Hom}_{F}(V, W)\right)=\operatorname{dim}(V) \cdot \operatorname{dim}(W)
$$

16. $\left(^{*}\right)$ Prove that $M_{n}(F)$ is a ring and that $G L_{n}(F)=\left\{A \in M_{n}(F) \mid A\right.$ is invertible $\}$ is a group, which is non-commmutative for $n \geq 2$.
17. $\left(^{*}\right)$ Let $V=\mathbb{R}^{2}$ be two-dimensional Euclidean space, with its usual x - and y-coordinate axes. Consider the linear transformation $L_{\alpha}: V \longrightarrow V$ that performs a reflection about the line $y=\alpha x$.
(a) Write the matrix for L_{α} with respect to the basis $\mathfrak{B}=\left\{e_{1}, e_{2}\right\}$. (Hint: Use elementary geometry to compute $L_{\alpha}\left(e_{1}\right)$ and $L_{\alpha}\left(e_{2}\right)$.)
(b) Calculate the matrix for $L_{\beta} \circ L_{\alpha}$ (with respect to \mathfrak{B}) in two ways: by multiplying the matrices for L_{β} and L_{α}, and by determining the matrix for the resulting composed linear transformation directly.
(c) Show that the composed linear transformation $L_{\beta} \circ L_{\alpha}$ is a rotation. By what angle are vectors in \mathbb{R}^{2} rotated under this transformation?
18. $\left(^{*}\right)$ If $A=\left[a_{i j}\right]$ is an $n \times m$ matrix then we define its transpose $A^{t}=\left[a_{j i}\right]$ to be the $m \times n$ matrix whose rows are the columns of A. That is,

$$
\text { if } A=\left[\begin{array}{ccccc}
a_{11} & \cdot & \cdot & \cdot & a_{1 m} \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
a_{n 1} & \cdot & \cdot & \cdot & a_{n m}
\end{array}\right] \text { then } A^{t}=\left[\begin{array}{ccccc}
a_{11} & \cdot & \cdot & \cdot & a_{n 1} \\
\cdot & & & \cdot \\
\cdot & & & \\
\cdot & & & & \cdot \\
a_{1 m} & \cdot & \cdot & \cdot & a_{m n}
\end{array}\right]
$$

(a) Prove that if A and B are $n \times m$, then $(A+B)^{t}=A^{t}+B^{t}$.
(b) Prove that if A is $n \times m$ and B is $m \times k$, then $(A B)^{t}=B^{t} A^{t}$.
(c) Prove that if A is $n \times n$, then $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
19. (*) Dummit and Foote, Section 11.2, \#1-7, 14-37.
20. (*) Let $V=\mathbb{R}^{n}$, and let $\mathbf{u}, \mathbf{v} \in V$. If $A: V \longrightarrow V$ is (the matrix for) a linear transformation, then define the following bilinear form:

$$
f_{A}(\mathbf{u}, \mathbf{v})=\mathbf{u}^{t} A \mathbf{v}
$$

(a) Show that f_{A} is indeed a bilinear form.
(b) Give a necessary and sufficient conditions on the matrix A that makes f_{A} alternating.
(Hint \#1: You might consider the $n=2$ case first to get a feel for this bilinear form. Hint \#2: Your answers just might involve the transpose!)
21. (*) Show that not every skew-symmetric multilinear form $f: V^{n} \longrightarrow F$ is alternating by constructing an example. (Note that the only cases where this can happen are over fields F wherein $1+1=0$.)
22. Let $\operatorname{dim}(V)=n$, and let $f: V^{k} \longrightarrow F$ be a non-trivial alternating k-linear form with $k<n$. Show by example that it is possible to have a set of k linearly independent vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ in V such that $f\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=0$. (Make sure that $k \geq 2$ so that f can be alternating!)
23. Let V be a vector space over F. Consider the set of k-linear forms $f: V^{k} \longrightarrow F$. For any two such forms f_{1} and f_{2} and any scalar $c \in F$, we define:

$$
\begin{array}{rlrl}
\left(f_{1}+f_{2}\right)\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) & =f_{1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)+f_{2}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right), & \forall \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V \\
\left(c f_{1}\right)\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=c \cdot f_{1}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right), & \forall \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V
\end{array}
$$

(a) $\left(^{*}\right)$ Convince yourself that the collection of k-linear forms on V form a vector space over F with addition and scalar multiplication defined as above.
$(\mathrm{b})\left(^{*}\right)$ Let $V=\mathbb{R}^{2}$. Show that the form $f: V^{2} \longrightarrow \mathbb{R}$ defined by $f((a, b),(c, d))=a d-b c$ is bilinear and alternating.
(c) Now let $V=\mathbb{R}^{3}$. Construct two linearly independent alternating bilinear forms $f: V^{2} \longrightarrow \mathbb{R}$.
(d) Determine the dimensions of the spaces of alternating bilinear forms on $V=\mathbb{R}^{2}$ and $V=\mathbb{R}^{3}$.

