
Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 6, Final Version
Due: MONDAY, February 23, 2009

1. (*) Read Dummit and Foote, Sections 11.1–11.4.

2. (*) Dummit and Foote, Section 11.1, # 1-7.

3. (*) Show that if {v1, . . . , vn} is a basis for V , then the representation of a given v ∈ V as a linear
combination of the basis elements is unique.

4. (*) If V and W are vector spaces and L : V → W is a linear map, show:

(a) 0 · v = 0,∀v ∈ V

(b) (−1) · v = −v,∀v ∈ V

(c) L(0) = 0

(d) L(−v) = −L(v),∀v ∈ V

(e) Ker(L) is a subspace of V

(f) Im(L) is a subspace of W

5. Let F = Fq be the finite field with q elements.

(a) Find, with proof, the number of 1-dimensional subspaces of Fn (n ≥ 1).

(b) Find, with proof, the number of 2-dimensional subspaces of Fn (n ≥ 2).

(c) Generalize to find, with proof, the number of m-dimensional subspaces of Fn (n ≥ m).

6. (a) Prove that every linear map L : F 2 → F 2 has the form

L(x, y) = (αx + βy, γx + δy)

for some constants α, β, γ, δ ∈ F .

(b) Prove that such a linear map is invertible iff αδ − βγ 6= 0.

7. (a) Prove that if dim(V ) = dim(W ) < ∞, then a linear map L : V → W is injective iff it is surjective.

(b) Show by example that the result if false if V and W are both infinite-dimensional.

8. (*) Let V be a vector space over F and W a subspace of V .

We define the quotient space V/W = {v + W | v ∈ V } with operations:

(v1 + W ) + (v2 + W ) = (v1 + v2) + W

α(v + W ) = (αv) + W

(a) Show that these operations are well-defined and that, with them, V/W is a vector space over F .

(b) Read Dummit and Foote’s Theorem 7 in Section 11.1.

(c) Prove the Vector Space Isomorphism Theorems:

i. (First) If L : V → W is linear, then Im(L) ∼= V/Ker(L).
ii. (Second) If V and W are subspaces of some vector space U , then (V + W )/W ∼= V/(V ∩W ).
iii. (Third) If U is a subspace of W , which is in turn a subspace of V , then (V/U)(W/U) ∼= V/W .



iv. (Fourth) If W is a subspace of V , then there is a bijection between the subspaces of V that
contain W and the subspaces of V/W given by U ↔ U/W .

9. Suppose that L : V → W is a linear bijection. Prove that L−1 : W → V is linear.

10. Prove that any vector space has a basis.

11. Given two vector spaces V and W over the same field F , we define their direct sum to be

V ⊕W = {(v, w) | v ∈ V,w ∈ W}

with vector space operations given by:

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

α(v, w) = (αv, αw)

∀α ∈ F,∀v, v1, v2 ∈ V,∀w,w1, w2 ∈ W .

(a) (*) Prove that V ⊕W is a vector space with these operations.

(b) (*) Prove that U ⊕ (V ⊕W ) ∼= (U ⊕ V )⊕W .

(c) If V and W are subspaces of a common finite-dimensional vector space U , we define V + W =
{v+w | v ∈ V,w ∈ W}. It is easy to see that V +W is a subspace of U . Prove that V +W ∼= V ⊕W
iff V ∩W = {0}.

12. A linear transformation P : V → V is called a projection if P 2 = P , where P 2 = P ◦P . For a projection
P : V → V , let E0 = Ker(P ) and E1 = {v ∈ V | P (v) = v}. Prove that V ∼= E0 ⊕ E1.

13. (*) (Sorry, out of order, but I had a request not to put new problems at the front of the list.)

(a) Show that f(x) = x3 + 3x2 − 8 is irreducible in Q[x].

(b) Show that f(x) = x4 − 22x2 + 1 is irreducible in Q[x].

(c) Decide whether or not f(x) = x6 − 12 is irreducible in Q[x].

(d) Decide whether or not f(x) = 2x7 − 25x3 + 10x− 30 is irreducible in Q[x].

14. Show that f(x) = x4 − 2x2 + 9 is irreducible in Q[x] but that there is no c ∈ Z such that f(x + c)
satisfies Eisenstein’s criterion.

15. Let V and W be finite-dimensional vector spaces over F . Prove that

dim(HomF (V,W )) = dim(V ) · dim(W ).

16. (*) Prove that Mn(F ) is a ring and that GLn(F ) = {A ∈ Mn(F ) | A is invertible} is a group, which is
non-commmutative for n ≥ 2.

17. (*) Let V = R2 be two-dimensional Euclidean space, with its usual x- and y- coordinate axes. Consider
the linear transformation Lα : V −→ V that performs a reflection about the line y = αx.

(a) Write the matrix for Lα with respect to the basis B = {e1, e2}. (Hint: Use elementary geometry
to compute Lα(e1) and Lα(e2).)

(b) Calculate the matrix for Lβ ◦ Lα (with respect to B) in two ways: by multiplying the matrices
for Lβ and Lα, and by determining the matrix for the resulting composed linear transformation
directly.

(c) Show that the composed linear transformation Lβ ◦ Lα is a rotation. By what angle are vectors
in R2 rotated under this transformation?



18. (*) If A = [aij ] is an n × m matrix then we define its transpose At = [aji] to be the m × n matrix
whose rows are the columns of A. That is,

if A =


a11 · · · a1m

· ·
· ·
· ·

an1 · · · anm

 then At =


a11 · · · an1

· ·
· ·
· ·

a1m · · · amn

 .

(a) Prove that if A and B are n×m, then (A + B)t = At + Bt.

(b) Prove that if A is n×m and B is m× k, then (AB)t = BtAt.

(c) Prove that if A is n× n, then det(At) = det(A).

19. (*) Dummit and Foote, Section 11.2, #1–7, 14–37.

20. (*) Let V = Rn, and let u,v ∈ V . If A : V −→ V is (the matrix for) a linear transformation, then
define the following bilinear form:

fA(u,v) = utAv

(a) Show that fA is indeed a bilinear form.

(b) Give a necessary and sufficient conditions on the matrix A that makes fA alternating.

(Hint #1: You might consider the n = 2 case first to get a feel for this bilinear form. Hint #2: Your
answers just might involve the transpose!)

21. (*) Show that not every skew-symmetric multilinear form f : V n −→ F is alternating by constructing
an example. (Note that the only cases where this can happen are over fields F wherein 1 + 1 = 0.)

22. Let dim(V ) = n, and let f : V k −→ F be a non-trivial alternating k-linear form with k < n. Show by
example that it is possible to have a set of k linearly independent vectors {v1, . . . ,vk} in V such that
f(v1, . . . ,vk) = 0. (Make sure that k ≥ 2 so that f can be alternating!)

23. Let V be a vector space over F . Consider the set of k-linear forms f : V k −→ F . For any two such
forms f1 and f2 and any scalar c ∈ F , we define:

(f1 + f2)(v1, . . . ,vk) = f1(v1, . . . ,vk) + f2(v1, . . . ,vk), ∀v1, . . . ,vk ∈ V

(cf1)(v1, . . . ,vk) = c · f1(v1, . . . ,vk), ∀v1, . . . ,vk ∈ V

(a) (*) Convince yourself that the collection of k-linear forms on V form a vector space over F with
addition and scalar multiplication defined as above.

(b) (*) Let V = R2. Show that the form f : V 2 −→ R defined by f((a, b), (c, d)) = ad− bc is bilinear
and alternating.

(c) Now let V = R3. Construct two linearly independent alternating bilinear forms f : V 2 −→ R.

(d) Determine the dimensions of the spaces of alternating bilinear forms on V = R2 and V = R3.


