Math 258, Section 31: Honors Algebra II Winter Quarter 2009 John Boller Homework 6, Final Version Due: MONDAY, February 23, 2009

- 1. (*) Read Dummit and Foote, Sections 11.1–11.4.
- 2. (*) Dummit and Foote, Section 11.1, # 1-7.
- 3. (*) Show that if $\{v_1, \ldots, v_n\}$ is a basis for V, then the representation of a given $v \in V$ as a linear combination of the basis elements is unique.
- 4. (*) If V and W are vector spaces and $L: V \to W$ is a linear map, show:
 - (a) $0 \cdot v = 0, \forall v \in V$
 - (b) $(-1) \cdot v = -v, \forall v \in V$
 - (c) L(0) = 0
 - (d) $L(-v) = -L(v), \forall v \in V$
 - (e) Ker(L) is a subspace of V
 - (f) Im(L) is a subspace of W

5. Let $F = \mathbb{F}_q$ be the finite field with q elements.

- (a) Find, with proof, the number of 1-dimensional subspaces of F^n $(n \ge 1)$.
- (b) Find, with proof, the number of 2-dimensional subspaces of F^n $(n \ge 2)$.
- (c) Generalize to find, with proof, the number of *m*-dimensional subspaces of F^n $(n \ge m)$.
- 6. (a) Prove that every linear map $L: F^2 \to F^2$ has the form

$$L(x,y) = (\alpha x + \beta y, \gamma x + \delta y)$$

for some constants $\alpha, \beta, \gamma, \delta \in F$.

- (b) Prove that such a linear map is invertible iff $\alpha \delta \beta \gamma \neq 0$.
- 7. (a) Prove that if $dim(V) = dim(W) < \infty$, then a linear map $L: V \to W$ is injective iff it is surjective.
 - (b) Show by example that the result if false if V and W are both infinite-dimensional.
- 8. (*) Let V be a vector space over F and W a subspace of V. We define the quotient space $V/W = \{v + W \mid v \in V\}$ with operations:

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

$$\alpha(v+W) = (\alpha v) + W$$

- (a) Show that these operations are well-defined and that, with them, V/W is a vector space over F.
- (b) Read Dummit and Foote's Theorem 7 in Section 11.1.
- (c) Prove the Vector Space Isomorphism Theorems:
 - i. (First) If $L: V \to W$ is linear, then $Im(L) \cong V/Ker(L)$.
 - ii. (Second) If V and W are subspaces of some vector space U, then $(V+W)/W \cong V/(V \cap W)$.
 - iii. (Third) If U is a subspace of W, which is in turn a subspace of V, then $(V/U)(W/U) \cong V/W$.

- iv. (Fourth) If W is a subspace of V, then there is a bijection between the subspaces of V that contain W and the subspaces of V/W given by $U \leftrightarrow U/W$.
- 9. Suppose that $L: V \to W$ is a linear bijection. Prove that $L^{-1}: W \to V$ is linear.
- 10. Prove that any vector space has a basis.
- 11. Given two vector spaces V and W over the same field F, we define their *direct sum* to be

$$V\oplus W=\{(v,w)\mid v\in V, w\in W\}$$

with vector space operations given by:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

$$\alpha(v,w) = (\alpha v, \alpha w)$$

 $\forall \alpha \in F, \forall v, v_1, v_2 \in V, \forall w, w_1, w_2 \in W.$

- (a) (*) Prove that $V \oplus W$ is a vector space with these operations.
- (b) (*) Prove that $U \oplus (V \oplus W) \cong (U \oplus V) \oplus W$.
- (c) If V and W are subspaces of a common finite-dimensional vector space U, we define $V + W = \{v+w \mid v \in V, w \in W\}$. It is easy to see that V+W is a subspace of U. Prove that $V+W \cong V \oplus W$ iff $V \cap W = \{0\}$.
- 12. A linear transformation $P: V \to V$ is called a *projection* if $P^2 = P$, where $P^2 = P \circ P$. For a projection $P: V \to V$, let $E_0 = Ker(P)$ and $E_1 = \{v \in V \mid P(v) = v\}$. Prove that $V \cong E_0 \oplus E_1$.
- 13. (*) (Sorry, out of order, but I had a request not to put new problems at the front of the list.)
 - (a) Show that $f(x) = x^3 + 3x^2 8$ is irreducible in $\mathbb{Q}[x]$.
 - (b) Show that $f(x) = x^4 22x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.
 - (c) Decide whether or not $f(x) = x^6 12$ is irreducible in $\mathbb{Q}[x]$.
 - (d) Decide whether or not $f(x) = 2x^7 25x^3 + 10x 30$ is irreducible in $\mathbb{Q}[x]$.
- 14. Show that $f(x) = x^4 2x^2 + 9$ is irreducible in $\mathbb{Q}[x]$ but that there is no $c \in \mathbb{Z}$ such that f(x+c) satisfies Eisenstein's criterion.
- 15. Let V and W be finite-dimensional vector spaces over F. Prove that

$$dim(Hom_F(V,W)) = dim(V) \cdot dim(W).$$

- 16. (*) Prove that $M_n(F)$ is a ring and that $GL_n(F) = \{A \in M_n(F) \mid A \text{ is invertible}\}$ is a group, which is non-commutative for $n \ge 2$.
- 17. (*) Let $V = \mathbb{R}^2$ be two-dimensional Euclidean space, with its usual x- and y- coordinate axes. Consider the linear transformation $L_{\alpha}: V \longrightarrow V$ that performs a reflection about the line $y = \alpha x$.
 - (a) Write the matrix for L_{α} with respect to the basis $\mathfrak{B} = \{e_1, e_2\}$. (Hint: Use elementary geometry to compute $L_{\alpha}(e_1)$ and $L_{\alpha}(e_2)$.)
 - (b) Calculate the matrix for $L_{\beta} \circ L_{\alpha}$ (with respect to \mathfrak{B}) in two ways: by multiplying the matrices for L_{β} and L_{α} , and by determining the matrix for the resulting composed linear transformation directly.
 - (c) Show that the composed linear transformation $L_{\beta} \circ L_{\alpha}$ is a rotation. By what angle are vectors in \mathbb{R}^2 rotated under this transformation?

18. (*) If $A = [a_{ij}]$ is an $n \times m$ matrix then we define its transpose $A^t = [a_{ji}]$ to be the $m \times n$ matrix whose rows are the columns of A. That is,

if
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ \vdots & & \ddots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$$
 then $A^t = \begin{bmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{1m} & \cdots & a_{mn} \end{bmatrix}$

- (a) Prove that if A and B are $n \times m$, then $(A + B)^t = A^t + B^t$.
- (b) Prove that if A is $n \times m$ and B is $m \times k$, then $(AB)^t = B^t A^t$.
- (c) Prove that if A is $n \times n$, then $det(A^t) = det(A)$.
- 19. (*) Dummit and Foote, Section 11.2, #1-7, 14-37.
- 20. (*) Let $V = \mathbb{R}^n$, and let $\mathbf{u}, \mathbf{v} \in V$. If $A : V \longrightarrow V$ is (the matrix for) a linear transformation, then define the following bilinear form:

$$f_A(\mathbf{u},\mathbf{v}) = \mathbf{u}^t A \mathbf{v}$$

- (a) Show that f_A is indeed a bilinear form.
- (b) Give a necessary and sufficient conditions on the matrix A that makes f_A alternating.

(Hint #1: You might consider the n = 2 case first to get a feel for this bilinear form. Hint #2: Your answers just might involve the transpose!)

- 21. (*) Show that not every skew-symmetric multilinear form $f: V^n \longrightarrow F$ is alternating by constructing an example. (Note that the only cases where this can happen are over fields F wherein 1 + 1 = 0.)
- 22. Let dim(V) = n, and let $f: V^k \longrightarrow F$ be a non-trivial alternating k-linear form with k < n. Show by example that it is possible to have a set of k linearly independent vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ in V such that $f(\mathbf{v}_1, \ldots, \mathbf{v}_k) = 0$. (Make sure that $k \ge 2$ so that f can be alternating!)
- 23. Let V be a vector space over F. Consider the set of k-linear forms $f: V^k \longrightarrow F$. For any two such forms f_1 and f_2 and any scalar $c \in F$, we define:

$$(f_1 + f_2)(\mathbf{v}_1, \dots, \mathbf{v}_k) = f_1(\mathbf{v}_1, \dots, \mathbf{v}_k) + f_2(\mathbf{v}_1, \dots, \mathbf{v}_k), \quad \forall \mathbf{v}_1, \dots, \mathbf{v}_k \in V$$
$$(cf_1)(\mathbf{v}_1, \dots, \mathbf{v}_k) = c \cdot f_1(\mathbf{v}_1, \dots, \mathbf{v}_k), \quad \forall \mathbf{v}_1, \dots, \mathbf{v}_k \in V$$

- (a) (*) Convince yourself that the collection of k-linear forms on V form a vector space over F with addition and scalar multiplication defined as above.
- (b) (*) Let $V = \mathbb{R}^2$. Show that the form $f: V^2 \longrightarrow \mathbb{R}$ defined by f((a, b), (c, d)) = ad bc is bilinear and alternating.
- (c) Now let $V = \mathbb{R}^3$. Construct two *linearly independent* alternating bilinear forms $f: V^2 \longrightarrow \mathbb{R}$.
- (d) Determine the dimensions of the spaces of alternating bilinear forms on $V = \mathbb{R}^2$ and $V = \mathbb{R}^3$.