Math 258, Section 31: Honors Algebra II
Winter Quarter 2009
John Boller
Homework 7, Final Version
Due: Friday, March 6, 2009

1. (*) Read Dummit and Foote, Sections 11.1-11.4 and Sections 10.1-10.3.
2. (*) Dummit and Foote, Section 11.4, \# 1-6.
3. Consider the linear map $L:(\mathbb{Z} / 7 \mathbb{Z})^{3} \longrightarrow(\mathbb{Z} / 7 \mathbb{Z})^{3}$ given by

$$
L(x, y, z)=(x+y+z, 2 x+3 y+4 z, 3 x+4 y+6 z)
$$

and let A be the matrix of L with respect to the standard basis.
(a) Find the inverse of A.
(b) Determine the eigenvalues of A.
(c) Determine the corresponding eigenspaces of A.
4. Suppose λ is an eigenvalue for the linear transformation $A: V \longrightarrow V$.
(a) Show that λ^{n} is an eigenvalue for A^{n} for any $n \in \mathbb{N}$.
(b) If A is invertible, show that λ^{-1} is an eigenvalue for A^{-1}, and that, therefore, λ^{n} is an eigenvalue for A^{n} for any $n \in \mathbb{Z}$. (By the way, $\left(^{*}\right)$ what happens if $\lambda=0$?)
5. Find examples of invertible linear transformations $A: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ such that:
(a) A has no real eigenvalues.
(b) A has only one eigenvalue λ, but $\operatorname{dim}\left(V_{\lambda}\right)<4$.
(c) $\mathbf{e}_{1}=(1,0,0,0)$ and $\mathbf{v}=(1,1,1,1)$ are both eigenvectors but have distinct eigenvalues.
6. Let F be a field, $M_{n}(F)$ be the matrix ring over F, and $A, B \in M_{n}(F)$ be two matrices.
(a) Prove that the trace of $A B$ equals the trace of $B A$.
(b) Prove that $p_{A B}(\lambda)=p_{B A}(\lambda)$.
(c) Prove that if either A or B is invertible, then $A B$ and $B A$ are similar matrices.
(d) Give an example where neither A nor B is invertible, and $A B$ is not similar to $B A$. (Hint: You can restrict attention to $n=2$, and it suffices to construct an example where $A B=0$ but $B A \neq 0$.)
7. Let $A: V \rightarrow V$ for some finite-dimensional vector space V. Prove that the geometric multiplicity of an eigenvalue of A is less than or equal to the algebraic multiplicity of the eigenvalue.
8. Suppose K is a field and R is a ring containing K in its center (and with the same 1) such that R is n-dimensional as a K-vector space.
(a) Construct an injective ring homomorphism $\varphi: R \rightarrow M_{n}(K)$, in terms of a choice of basis for R as a K-vector space.
(b) Write down φ explicitly when $K=\mathbb{R}$ and $R=\mathbb{C}$, with basis $\{1, i\}$. Prove also that for $z \in \mathbb{C}$, the determinant of $\varphi(z)$ equals the square of the modulus of z.
(c) Write down φ explicitly when $K=\mathbb{R}$ and $R=\mathbb{R}[x] /\left(x^{2}\right)$, with basis $\{1, x\}$.
(d) When $K=\mathbb{Q}$ and $R=\mathbb{Q}[\sqrt{D}]$ with basis $\{1, \sqrt{D}\}$ (where D is a square-free integer that is neither 0 nor 1), prove that the field norm of $x \in R$ is the determinant of $\varphi(x)$.
9. (*) Dummit and Foote, Section 10.1, \#1-7.
10. Dummit and Foote, Section 10.1, \#8:

An element m of the R-module M is called a torsion element if $r m=0$ for some non-zero $r \in R$. The set of torsion elements is denoted

$$
\operatorname{Tor}(M)=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\}
$$

(a) Prove that if R is an integral domain, then $\operatorname{Tor}(M)$ is a submodule of M (called the torsion submodule).
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule.
(c) If R has zero divisors, show that every non-zero R-module has non-zero torsion elements.
11. Dummit and Foote, a combination of $\# 9,10,12$:

If N is a submodule of M, the annihilator of N in R is $\{r \in R \mid r n=0, \forall n \in N\}$.
If I is a right-ideal of R, the annihilator of I in M is $\{m \in M \mid a m=0, \forall a \in I\}$.
(a) Prove that the annihilator of N in R is a two-sided ideal in R.
(b) Prove that the annihilator of I in M is a submodule of M.
(c) If N is a submodule of M and I is its annihilator in R, prove that the annihilator of I in M contains N, and give an example where the annihilator of I in M does not equal N.
(d) If I is a right ideal in R and N is its annihilator in M, prove that the annihilator of N in R contains I, and give an example where the annihilator of N in R does not equal I.
12. (*) Dummit and Foote, Section 10.2, \#1-5, 7-8:
13. Dummit and Foote, Section 10.2, \#6:

Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} /(m, n) \mathbb{Z}$.
14. Dummit and Foote, Section 10.2, $\# 9$:

Let R be a commutative ring with 1 . Prove that $\operatorname{Hom}_{R}(R, M)$ and M are isomorphic as left R-modules.
15. (*) Show that if V is a vector space over F and $T: V \rightarrow V$ is a linear map, then V is an $F[x]$-module with the multiplication $p(x) v=p(T) v$, for any $p(x) \in F[x]$.
16. (*) Let R be a ring with 1 , and let M be a left R-module. For any subset $A \subset M$, show that $R A=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n} \mid a_{i} \in A, r_{i} \in R, 1 \leq i \leq n, n \in \mathbb{N}\right\}$ is a submodule of M.
17. (*) Show that $R[x]$ is finitely generated as an $R[x]$ module but is not finitely generated as an R-module.

