Math 258, Section 31: Honors Algebra II Winter Quarter 2009 John Boller Homework 8, Final Version Due: WEDNESDAY, March 11, 2009

- 1. (*) Read Dummit and Foote, Sections 10.1–10.4.
- 2. (*) Dummit and Foote, Section 10.3, # 1-6.
- 3. A combination of Dummit and Foote, Section 10.3, #9-11.
 - If R is a ring with 1 and M is an R-module, we define M to be *irreducible* if $M \neq 0$ and M has no non-trivial R-submodules.
 - (a) Show that if M is irreducible, then M is cyclic, and any non-zero element is a generator.
 - (b) Classify the irreducible Z-modules.
 - (c) If R is commutative, show that an R-module M is irreducible if and only if M is isomorphic to R/I for some maximal ideal $I \subset R$.
 - (d) Show that if M_1 and M_2 are irreducible *R*-modules, then any non-zero homomorphism $\varphi: M_1 \to M_2$ is an isomorphism.
 - (e) Show that if M is irreducible, then $\operatorname{End}_R(M)$ is a division ring.
- 4. Show that a direct sum of free *R*-modules is free.
- 5. Show that no finite abelian group is free when considered as a \mathbb{Z} -module.
- 6. (*) Dummit and Foote, Section 10.4, #1-3, 5-6, 11-13.
- 7. Dummit and Foote, Section 10.4, #4: Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ as left \mathbb{Q} -modules.
- 8. Adapted from Dummit and Foote, Section 10.4, #18-20:

Let R be an integral domain, and for an ideal $I \subset R$, consider the R-module $I \otimes_R I$.

- (a) Show that if I is principal, then $I \otimes_R I$ has no torsion elements.
- (b) When $R = \mathbb{Z}[x]$ and I = (2, x), show that $2 \otimes x x \otimes 2$ is a torsion element of $I \otimes_R I$.
- (c) When $R = \mathbb{Z}[x]$ and I = (2, x), show that the submodule W generated by $2 \otimes x x \otimes 2$ in $I \otimes_R I$ is isomorphic to R/I.
- (d) (*) When $R = \mathbb{Z}[x]$ and I = (2, x), show that the element $2 \otimes 2 + x \otimes x$ in $I \otimes_R I$ is not a simple tensor.