Math 259, Section 33: Honors Algebra III
Spring Quarter 2009
John Boller
Homework 2, Final Version
Due: Friday, April 10, 2009

1. $\left(^{*}\right)$ Read Dummit and Foote, Sections 12.1-12.3.
2. Dummit and Foote, Section 12.1, \#7:

Let R be a ring. Prove that if A_{1}, \ldots, A_{m} are R-modules and B_{i} is a submodule of A_{i} for each $i=1, \ldots, m$, then

$$
\left(A_{1} \oplus \cdots \oplus A_{m}\right) /\left(B_{1} \oplus \cdots \oplus B_{m}\right) \cong\left(A_{1} / B_{1}\right) \oplus \cdots \oplus\left(A_{m} / B_{m}\right)
$$

3. Find the invariant factors and elementary divisors of the following modules:
(a) $M=(\mathbb{Z} / 12 \mathbb{Z}) \oplus(\mathbb{Z} / 36 \mathbb{Z}) \oplus(\mathbb{Z} / 100 \mathbb{Z})$ considered as a \mathbb{Z}-module.
(b) $M=\mathbb{Q}[x] /\left(\left(x^{2}+1\right)\right) \oplus \mathbb{Q}[x] /\left(\left(x^{4}-1\right)\right) \oplus \mathbb{Q}[x] /\left(\left(x^{8}-1\right)\right) \oplus \mathbb{Q}[x] /\left(\left(x^{4}+1\right)^{2}\right)$ considered as a $\mathbb{Q}[x]$-module.
4. $\left(^{*}\right)$ Dummit and Foote, Section 12.2, \#1-3 and 5-9.
5. Dummit and Foote, Section 12.2, \# 4:

Prove that two 3×3 matrices over a field F are similar if and only if they have the same characteristic polynomials and the same minimal polynomials. Give an explicit counter-example to this statement for 4×4 matrices.
6. Suppose K is a field and R is a ring with 1 containing K in its center, such that R is finite-dimensional as a K-vector space.
(a) Prove that left multiplication by any element a of R is a K-linear map l_{a} from R to itself.
(b) Prove that $a \in R$ satisfies a monic polynomial $p(x) \in K[x]$ if and only if the linear map l_{a} satisfies the same polynomial p (i.e., $p\left(l_{a}\right)$ is the zero linear map).
(c) In the case where $K=\mathbb{R}$ and $R=\mathbb{C}$, write the explicit matrix for l_{a} where $a=u+i v$, in terms of the basis $\{1, i\}$. Determine the minimal polynomial of l_{a}.
7. Suppose K is a field and R is a ring with 1 containing K in its center, such that R is m-dimensional as a K-vector space. Suppose M is a free R-module of rank n. Prove that M is $m n$-dimensional as a K-vector space, by constructing a basis of size $m n$ for M over K in terms of a basis for M over R and a basis for R over K.
8. Adapted from Dummit and Foote, Section 12.2, \#10-11 and Example (4) from page 486 :
(a) $\left(^{*}\right)$ Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $m(x)=(x+1)^{2}(x-1)$.
(b) Write out the Rational Canonical Form for representatives of matrices from all similarity classes of 6×6 matrices over \mathbb{Q} with characteristic polynomial $m(x)=\left(x^{4}-1\right)\left(x^{2}-1\right)$.
(c) Write out the Rational Canonical Form for representatives of matrices from all similarity classes of 6×6 matrices over \mathbb{C} with characteristic polynomial $m(x)=\left(x^{4}-1\right)\left(x^{2}-1\right)$.

