Math 259, Section 33: Honors Algebra III
Spring Quarter 2009
John Boller
Homework 4, Version 2 (one minor correction to \# 6)
Due: Friday, May 1, 2009

1. $\left({ }^{*}\right)$ Read Dummit and Foote, Chapter 13.
2. Dummit and Foote, Section 13.2, \#15.
3. Dummit and Foote, Section 13.2, \#17.
4. Dummit and Foote, Section 13.2, \#18.
5. Dummit and Foote, Section 13.3, \#1:

Show that it is impossible to construct a regular 9-gon using straightedge and compass.
6. (*) Dummit and Foote, Section 13.3, \#4:

To construct the regular 7 -gon, it is necessary and sufficient to construct the length $\cos (2 \pi / 7)$. Show that $\alpha=2 \cos (2 \pi / 7)$ satisfies the equation $x^{3}+x^{2}-2 x-1=0$ and that therefore the the regular 7 -gon is not constructible.
7. Dummit and Foote, Section 13.3, \#5:

Use the fact that $\alpha=2 \cos (2 \pi / 5)$ satisfies the equation $x^{2}+x-1=0$ to conclude that the regular 5 -gon is construcible.
8. Dummit and Foote, Section 13.4, \#2,4:
(a) Determine the splitting field and its degree over \mathbb{Q} of $x^{6}-4$.
(b) Determine the splitting field and its degree over \mathbb{Q} of $x^{4}+2$.
9. Prove that $f(x) \in F[x]$ is separable if and only if it is relatively prime to its formal derivative, that is $\left(f(x), f^{\prime}(x)\right)=1$.
10. Dummit and Foote, Section 13.5, \# 5:

For any prime p and any nonzero $a \in \mathbb{F}_{p}$, prove that $x^{p}-x+a$ is irreducible and separable over \mathbb{F}_{p}.
11. (*) Dummit and Foote, Section 13.5, \# 1-4, 6-10.

