Math 259, Section 33: Honors Algebra III Spring Quarter 2009 John Boller Homework 5 Due: Friday, May 8, 2009

- 1. (*) Read Dummit and Foote, Chapter 13.5–13.6 and 14.1–14.2.
- 2. (*) Dummit and Foote, Section 13.6, #1-5.
- 3. Dummit and Foote, Section 13.6, #6: Show that if n > 1 is odd, then $\Phi_{2n}(x) = \Phi_n(-x)$.
- 4. Dummit and Foote, Section 13.6, #9: Show that if $\alpha \in F$ for some field F of characteristic p, then $A = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$ satisfies $A^p = I$ and cannot be diagonalized unless $\alpha = 0$.
- 5. A concatenation of Dummit and Foote, Section 13.6, #10-12:

Let $F = \mathbb{F}_{p^n}$, and consider the Frobenius map $\varphi : F \to F$ given by $\varphi(x) = x^p$.

- (a) Show that φ is an isomorphism.
- (b) Show that φ^n is the identity and that no lower power of φ is the identity.
- (c) Find the rational canonical form for φ acting on $F = \mathbb{F}_{p^n}$ considered as an \mathbb{F}_p -vector space.
- (d) Find the Jordan canonical form (over a field containing all necessary eigenvalues) for φ acting on $F = \mathbb{F}_{p^n}$ considered as an \mathbb{F}_p -vector space.
- Prove a special case of Dirichlet's Theorem on primes in arithmetic progressions by doing Dummit and Foote, Section 13.6, # 14–17.
- 7. (*) Dummit and Foote, Section 14.1, # 1–8.
- 8. Adapted from Dummit and Foote, Section 14.1, # 9:

Let k be a field, and consider k(t). Show that the map $t \mapsto t+1$ is an automorphism of k(t), and determine its fixed field.

9. Dummit and Foote, Section 14.1, #10:

Let K be an extension of F, and let $\varphi : K \to K'$ be an isomorphism of fields which maps F to the subfield F' in K'. Prove that $\sigma \mapsto \varphi \sigma \varphi^{-1}$ defines a group isomorphism $\operatorname{Aut}(K/F) \to \operatorname{Aut}(K'/F')$.

- 10. Give an example of a field K, a field extension L of K, and a field automorphism σ of K that cannot be extended to any field automorphism of L.
- 11. Give an example of a field K, a field extension L of K, and a field automorphism σ of L such that $\sigma(K) \neq K$.