Math 259, Section 33: Honors Algebra III Spring Quarter 2009 John Boller Homework 6, Final Version Due: Friday, May 15, 2009

- 1. (*) Read Dummit and Foote, Sections 14.1–14.3.
- 2. (*) Dummit and Foote, Section 14.2, #1-14.
- 3. Suppose K is a field, L is a finite extension of K, and M and M' are subfields of L containing K. Suppose $\sigma : M \to M'$ is an isomorphism fixing K pointwise and $p(x) \in M[x]$ is an irreducible polynomial. Let $\sigma(p)$ be the polynomial in M'[x] obtained by applying σ to all the coefficients of p. Suppose α and α' are elements of L that are roots of the polynomials p and $\sigma(p)$ respectively. Prove that α and α' have the same minimal polynomial over K.
- 4. Suppose K is a field and L is a finite normal extension of K. Let $G = \operatorname{Aut}(L/K)$, and let M be the fixed field of G.
 - (a) If K is a perfect field (i.e., every irreducible polynomial over K is separable), prove that M = K.
 - (b) If K has characteristic p, prove that for any $a \in M$, there exists some natural number n such that $a^{p^n} \in K$. (Hint: Consider the minimal polynomial $f(x) \in K[x]$ of a, and prove that if f is not linear, then $f(x) = g(x^p)$ for some polynomial g. Repeat.)
- 5. Prove that $\mathbb{Q}[x]/(\Phi_n(x))$ is a Galois extension of \mathbb{Q} , where Φ_n denotes the n^{th} cyclotomic polynomial.
- 6. Suppose K is a field and f is a separable irreducible polynomial of degree p, where p is prime. Let L be the splitting field of f over K. Prove that the Galois group of L over K contains a cyclic subgroup of order p.
- 7. Dummit and Foote, Section 14.2, # 4–5: Let p be a prime, and let $f(x) = x^p - 2$.
 - (a) Determine the elements of the Galois group of f(x) over \mathbb{Q} .
 - (b) Prove that the Galois group of f(x) over \mathbb{Q} is isomorphic to the group of matrices, $\{\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \mid a, b \in \mathbb{F}_p, a \neq 0\}$.
- 8. Dummit and Foote, Section 14.2, # 10 and 12:
 - (a) Let $f(x) = x^8 3 \in \mathbb{Q}[x]$. Determine the Galois group of the splitting field of f over \mathbb{Q} .
 - (b) Let $g(x) = x^4 14x^2 + 9 \in \mathbb{Q}[x]$. Determine the Galois group of the splitting field of g over \mathbb{Q} .
- 9. Dummit and Foote, Section 14.2, # 13:

Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.