Math 259, Section 33: Honors Algebra III
Spring Quarter 2009
John Boller
Homework 6, Final Version
Due: Friday, May 15, 2009

1. $\left(^{*}\right)$ Read Dummit and Foote, Sections 14.1-14.3.
2. (*) Dummit and Foote, Section 14.2, \#1-14.
3. Suppose K is a field, L is a finite extension of K, and M and M^{\prime} are subfields of L containing K. Suppose $\sigma: M \rightarrow M^{\prime}$ is an isomorphism fixing K pointwise and $p(x) \in M[x]$ is an irreducible polynomial. Let $\sigma(p)$ be the polynomial in $M^{\prime}[x]$ obtained by applying σ to all the coefficients of p. Suppose α and α^{\prime} are elements of L that are roots of the polynomials p and $\sigma(p)$ respectively. Prove that α and α^{\prime} have the same minimal polynomial over K.
4. Suppose K is a field and L is a finite normal extension of K. Let $G=\operatorname{Aut}(L / K)$, and let M be the fixed field of G.
(a) If K is a perfect field (i.e., every irreducible polynomial over K is separable), prove that $M=K$.
(b) If K has characteristic p, prove that for any $a \in M$, there exists some natural number n such that $a^{p^{n}} \in K$. (Hint: Consider the minimal polynomial $f(x) \in K[x]$ of a, and prove that if f is not linear, then $f(x)=g\left(x^{p}\right)$ for some polynomial g. Repeat.)
5. Prove that $\mathbb{Q}[x] /\left(\Phi_{n}(x)\right)$ is a Galois extension of \mathbb{Q}, where Φ_{n} denotes the $n^{t h}$ cyclotomic polynomial.
6. Suppose K is a field and f is a separable irreducible polynomial of degree p, where p is prime. Let L be the splitting field of f over K. Prove that the Galois group of L over K contains a cyclic subgroup of order p.
7. Dummit and Foote, Section 14.2, \# 4-5:

Let p be a prime, and let $f(x)=x^{p}-2$.
(a) Determine the elements of the Galois group of $f(x)$ over \mathbb{Q}.
(b) Prove that the Galois group of $f(x)$ over \mathbb{Q} is isomorphic to the group of matrices, $\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right] \right\rvert\, a, b \in \mathbb{F}_{p}, a \neq 0\right\}$.
8. Dummit and Foote, Section 14.2, \# 10 and 12:
(a) Let $f(x)=x^{8}-3 \in \mathbb{Q}[x]$. Determine the Galois group of the splitting field of f over \mathbb{Q}.
(b) Let $g(x)=x^{4}-14 x^{2}+9 \in \mathbb{Q}[x]$. Determine the Galois group of the splitting field of g over \mathbb{Q}.
9. Dummit and Foote, Section 14.2, \# 13:

Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.

