Math 259, Section 33: Honors Algebra III Spring Quarter 2009 John Boller Homework 7, Version 2 Due: WEDNESDAY, June 3, 2009

- 1. (*) Read Dummit and Foote, Sections 14.3–14.7.
- 2. (*) Dummit and Foote, Section 14.3, #1-7 and 10.
- 3. Dummit and Foote, Section 14.3, #8:

Determine the splitting field of the polynomial $f(x) = x^p - x - a$ over \mathbb{F}_p , where $a \in \mathbb{F}_p$ and $a \neq 0$. Show explicitly that the Galois group is cyclic.

- 4. Dummit and Foote, Section 14.3, #11: Prove that $f(x) = x^{p^n} - x + 1$ is irreducible over \mathbb{F}_p only when n = 1 or n = p = 2.
- 5. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Find an element $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$.
- 6. Dummit and Foote, Section 14.4, #6:

Read Proposition 24 and prove that $\mathbb{F}_p(x, y)/\mathbb{F}_p(x^p, y^p)$ is not a simple extension by explicitly exhibiting an infinite number of intermediate subfields.

- 7. Determine the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ and draw lattice diagrams of the intermediate subfields for n = 13 and n = 16.
- 8. Find the other roots of Cardano's two cubics:

•
$$x^3 - 15x - 4$$

- $x^3 + 6x 20$
- 9. (*) Dummit and Foote, Section 14.6. #1-14. (Please try some of these!)
- 10. Dummit and Foote, Section 14.6. #15:

Let $p \in \mathbb{Z}$ be prime, and let $f(x) = x^4 + px + p \in \mathbb{Q}[x]$.

- (a) Show that f(x) is irreducible for every prime p.
- (b) Show that if $p \neq 3, 5$, then the Galois group of f(x) is S_4 .
- (c) Show that if p = 3, then the Galois group of f(x) is D_4 .
- (d) Show that if p = 5, then the Galois group of f(x) is C_4 .