Math 259, Section 33: Honors Algebra III
Spring Quarter 2009
John Boller
Homework 7, Version 2
Due: WEDNESDAY, June 3, 2009

1. (*) Read Dummit and Foote, Sections 14.3-14.7.
2. (*) Dummit and Foote, Section 14.3, \#1-7 and 10.
3. Dummit and Foote, Section 14.3, \#8:

Determine the splitting field of the polynomial $f(x)=x^{p}-x-a$ over \mathbb{F}_{p}, where $a \in \mathbb{F}_{p}$ and $a \neq 0$. Show explicitly that the Galois group is cyclic.
4. Dummit and Foote, Section 14.3, \#11:

Prove that $f(x)=x^{p^{n}}-x+1$ is irreducible over \mathbb{F}_{p} only when $n=1$ or $n=p=2$.
5. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Find an element $\alpha \in K$ such that $K=\mathbb{Q}(\alpha)$.
6. Dummit and Foote, Section 14.4, \#6:

Read Proposition 24 and prove that $\mathbb{F}_{p}(x, y) / \mathbb{F}_{p}\left(x^{p}, y^{p}\right)$ is not a simple extension by explicitly exhibiting an infinite number of intermediate subfields.
7. Determine the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ and draw lattice diagrams of the intermediate subfields for $n=13$ and $n=16$.
8. Find the other roots of Cardano's two cubics:

- $x^{3}-15 x-4$
- $x^{3}+6 x-20$

9. (*) Dummit and Foote, Section 14.6. \#1-14. (Please try some of these!)
10. Dummit and Foote, Section 14.6. \#15:

Let $p \in \mathbb{Z}$ be prime, and let $f(x)=x^{4}+p x+p \in \mathbb{Q}[x]$.
(a) Show that $f(x)$ is irreducible for every prime p.
(b) Show that if $p \neq 3,5$, then the Galois group of $f(x)$ is S_{4}.
(c) Show that if $p=3$, then the Galois group of $f(x)$ is D_{4}.
(d) Show that if $p=5$, then the Galois group of $f(x)$ is C_{4}.

