1. (*) Read Dummit and Foote, Sections 14.3–14.7.

2. (*) Dummit and Foote, Section 14.3, #1–7 and 10.

3. Dummit and Foote, Section 14.3, #8:
 Determine the splitting field of the polynomial \(f(x) = x^p - x - a \) over \(\mathbb{F}_p \), where \(a \in \mathbb{F}_p \) and \(a \neq 0 \).
 Show explicitly that the Galois group is cyclic.

4. Dummit and Foote, Section 14.3, #11:
 Prove that \(f(x) = x^{p^n} - x + 1 \) is irreducible over \(\mathbb{F}_p \) only when \(n = 1 \) or \(n = p = 2 \).

5. Let \(K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \). Find an element \(\alpha \in K \) such that \(K = \mathbb{Q}(\alpha) \).

6. Dummit and Foote, Section 14.4, #6:
 Read Proposition 24 and prove that \(\mathbb{F}_p(x, y)/\mathbb{F}_p(x^p, y^p) \) is not a simple extension by explicitly exhibiting an infinite number of intermediate subfields.

7. Determine the Galois group \(\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \) and draw lattice diagrams of the intermediate subfields for \(n = 13 \) and \(n = 16 \).

8. Find the other roots of Cardano’s two cubics:
 - \(x^3 - 15x - 4 \)
 - \(x^3 + 6x - 20 \)

9. (*) Dummit and Foote, Section 14.6. #1–14. (Please try some of these!)

10. Dummit and Foote, Section 14.6. #15:
 Let \(p \in \mathbb{Z} \) be prime, and let \(f(x) = x^4 + px + p \in \mathbb{Q}[x] \).
 (a) Show that \(f(x) \) is irreducible for every prime \(p \).
 (b) Show that if \(p \neq 3, 5 \), then the Galois group of \(f(x) \) is \(S_4 \).
 (c) Show that if \(p = 3 \), then the Galois group of \(f(x) \) is \(D_4 \).
 (d) Show that if \(p = 5 \), then the Galois group of \(f(x) \) is \(C_4 \).