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In these lectures I will describe a program (which I will call the concentration-
compactness/rigidity method) that Frank Merle and I have been developing to
study critical evolution problems. The issues studied center around global well-
posedness and scattering. The method applies to non-linear dispersive and wave
equations in both defocusing and focusing cases. The method can be divided into
two parts. The first part (“the concentration-compactness” part) is in some sense
“universal” and works in similar ways for “all” critical problems. The second part
(“the rigidity” part) has a “universal” formulation, but needs to be established
individually for each problem. The method is inspired by the elliptic work on the
Yamabe problem and by works of Merle, Martel–Merle and Merle–Raphäel in the
non-linear Schrödinger equation and generalized KdV equations.

To focus on the issues, let us first concentrate on the energy critical non-
linear Schrödinger equation (NLS) and the energy critical non-linear wave equation
(NLW). We thus have:

i ∂tu+4u± |u|4/N−2u = 0, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1(Rn), N ≥ 3,
(1)

and 
∂2
t u−4u = ±|u|4/N−2u, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1(Rn),

∂tu
∣∣
t=0

= u1 ∈ L2(Rn), N ≥ 3.

(2)

In both cases, the “−” sign corresponds to the defocusing case, while the “+” sign
corresponds to the focusing case. For (1), if u is a solution, so is 1

λN−2/2u
(
x
λ ,

t
λ2

)
.

For (2), if u is a solution, so is 1
λN−2/2u

(
x
λ ,

t
λ

)
. Both scalings leave invariant the

energy spaces Ḣ1, Ḣ1 × L2 respectively, and that is why they are called energy
critical. The energy which is conserved in this problem is

E±(u0) =
1
2

∫
|∇u0|2 ±

1
2∗

∫
|u0|2

∗
, (NLS)

E±((u0, u1)) =
1
2

∫
|∇u0|2 +

1
2

∫
|u1|2 ±

1
2∗

∫
|u0|2

∗
, (NLW)

where 1
2∗ = 1

2 −
1
N = N−2

2N . The “+” corresponds to the defocusing case while the
“−” corresponds to the focusing case.

In both problems, the theory of the local Cauchy problem has been un-
derstood for a while (in the case of (1), through the work of Cazenave–Weissler
[7], while in the case of (2) through the works of Pecher [37], Ginibre–Velo [14],
Ginibre–Velo–Soffer [13], and many others, for instance [3], [20], [34], [41], etc.).
These works show that, say for (1), for any u0 with ‖u0‖Ḣ1 ≤ δ, there exists a
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unique solution of (1) defined for all time and the solution scatters, i.e., there exist
u+

0 , u−0 in Ḣ1 such that

lim
t→±∞

∥∥u(t)− eit∆u±0
∥∥
Ḣ1 = 0.

A corresponding result holds for (2). Moreover, given any initial data u0 ((u0, u1))
in the energy space, there exist T+(u0), T−(u0) such that there exists a unique
solution in (−T−(u0), T+(u0)) and the interval is maximal (for (2), (−T−(u0, u1),
T+(u0, u1))). In both problems, there exists a crucial space-time norm (or “Stri-
chartz norm”). For (1), on a time interval I, we define

||u||S(I) = ||u||
L

2(N+2)/N−2
I L

2(N+2)/N−2
x

,

while for (2) we have

||u||S(I) = ||u||
L

2(N+1)/N−2
I L

2(N+1)/N−2
x

.

This norm is crucial, say for (1), because, if T+(u0) < +∞, we must have

||u||S((0,T+(u0))) = +∞;

moreover, if T+(u0) = +∞, u scatters at +∞ if and only if ||u||S(0,+∞) < +∞.
Similar results hold for (2). The question that attracted people’s attention here
is: What happens for large data? The question was first studied for (2) in the
defocusing case, through works of Struwe [44] in the radial case, Grillakis [16], [17]
in the general case, for the preservation of smoothness, and in the terms described
here in the works of Shatah–Struwe [41], [42], Bahouri–Shatah [3], Bahouri–Gérard
[2], Kapitansky [20], etc. The summary of these works is that (this was achieved
in the early 90’s), for any pair (u0, u1) ∈ Ḣ1 ×L2, in the defocusing case we have
T±(u0, u1) = +∞ and the solution scatters. The corresponding results for (1) in
the defocusing case took much longer. The first result was established by Bourgain
[4] in 1998, who established the analogous result for u0 radial, N = 3, 4, with
Grillakis [18] showing preservation of smoothness for N = 3 and radial data. Tao
extended these results to N ≥ 5, u0 radial [48]. Finally, Colliander–Kell–Staffilani–
Takaoka–Tao proved this for N = 3 and all data u0 [8], with extensions to N = 4
by Ryckman–Vişan [40] and to N ≥ 5 by Vişan [54] in 2005.

In the focusing case, these results do not hold. In fact, for (2) H. Levine
[33] showed in 1974 that in the focusing case, if (u0, u1) ∈ Ḣ1 × L2, u0 ∈ L2 and
E((u0, u1)) < 0, there is always a break-down in finite time, i.e., T±(u0, u1) <∞.
He showed this by an “obstruction” type of argument. Recently Krieger–Schlag–
Tătaru [32] have constructed radial examples (N = 3), for which T±(u0, u1) <∞.
For (1) a classical argument due to Zakharov and Glassey [15], based on the virial
identity, shows the same result as H. Levine’s if

∫
|x|2|u0|2 < ∞, E(u0) < 0.

Moreover, for both (1) and (2), in the focusing case we have the following static
solution:

W (x) =
(

1 +
|x|2

N(N − 2)

)−(N−2)/2

∈ Ḣ1(RN ),
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which solves the elliptic equation

4W + |W |4/N−2W = 0.

Thus, scattering need not occur for solutions that exist globally in time. The
solution W plays an important role in the Yamabe problem (see [1] for instance)
and it does so once more here. The results in which I am going to concentrate here
are:

Theorem 1 (Kenig–Merle [25]). For the focusing energy critical (NLS), 3 ≤ N ≤ 6,
consider u0 ∈ Ḣ1 such that E(u0) < E(W ), u0 radial. Then:

i) If ‖u0‖Ḣ1 < ‖W‖Ḣ1 , the solution exists for all time and scatters.

ii) If ||u0||L2 <∞, ‖u0‖Ḣ1 > ‖W‖Ḣ1 , then T+(u0) < +∞, T−(u0) < +∞.

Remark 1. Recently, Killip–Vişan [29] have combined the ideas of the proof of
Theorem 2, as applied to NLS in [10], with another important new idea, to extend
Theorem 1 to the non-radial case for N ≥ 5.

The case where the radial assumption is not needed in dimensions 3 ≤ N ≤ 6
is the one of (2). We have:

Theorem 2 (Kenig–Merle [23]). For the focusing energy critical (NLW), where
3 ≤ N ≤ 6, consider (u0, u1) ∈ Ḣ1 × L2 such that E((u0, u1)) < E((W, 0)). Then:

i) If ‖u0‖Ḣ1 < ‖W‖Ḣ1 , the solution exists for all time and scatters.

ii) If ‖u0‖Ḣ1 > ‖W‖Ḣ1 , then T±(u0) < +∞.

I will sketch the proofs of these two theorems and the outline of the general
method in these lectures. The method has found other interesting applications:

Mass Critical NLS: i ∂tu+4u± |u|4/Nu = 0, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0, N ≥ 3.
(3)

Here, ||u0||L2 is the critical norm. The analog of Theorem 1 was obtained, for u0

radial, by Tao–Vişan–Zhang [50], Killip–Tao–Vişan [28], Killip–Vişan-Zhang [30],
using our proof scheme for N ≥ 2. (In the focusing case one needs to assume
||u0||L2 < ||Q||L2 , where Q is the ground state, i.e., the non-negative solution of
the elliptic equation 4Q+Q1+4/N = Q.) The case N = 1 is open.
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Corotational wave maps into S2, 4D Yang–Mills in the radial case: Consider the
wave map system

2u = A(u)(Du,Du) ⊥ TuM

where u = (u1, . . . , ud) : R × RN → M ↪→ Rd, where the target manifold M is
isometrically embedded in Rd, and A(u) is the second fundamental form for M
at u. We consider the case M = S2 ⊂ R3. The critical space here is (u0, u1) ∈
ḢN/2×ḢN−2/2, so that when N = 2, the critical space is Ḣ1×L2. It is known that
for small data in Ḣ1 × L2 we have global existence and scattering (Tătaru [52],
[53], Tao [47]). Moreover, Rodnianski–Sterbenz [39] and Krieger–Schlag–Tătaru
[31] showed that there can be finite time blow-up for large data. In earlier work,
Struwe [45] had considered the case of co-rotational maps. These are maps which
have a special form. Writing the metric on S2 in the form (ρ, θ), ρ > 0, θ ∈ S1,
with ds2 = dρ2 + g(ρ)2dθ2, where g(ρ) = sin ρ, we consider, using (r, φ) as polar
coordinates in R2, maps of the form ρ = v(r, t), θ = φ. These are the co-rotational
maps and Krieger–Schlag–Tătaru [31] exhibited blow-up for corotational maps.
There is a stationary solution Q, which is a non-constant harmonic map of least
energy. Struwe proved that if E(v) ≤ E(Q), then v and the corresponding wave
map u are global in time. Using our method, in joint work of Cote–Kenig–Merle [9]
we show that, in addition, there is an alternative: v ≡ Q or the solution scatters.
We also prove the corresponding results for radial solutions of the Yang–Mills
equations in the critical energy space in R4 (see [9]).

Cubic NLS in 3D: Consider the classic cubic NLS in 3D:
i ∂tu+4u∓ |u|2u = 0, (x, t) ∈ R3 × R,

u
∣∣
t=0

= u0 ∈ Ḣ1/2(R3).

Here Ḣ1/2 is the critical space, “−” corresponds to defocusing and “+” to focusing.
In the focusing case, Duyckaerts–Holmer–Roudenko [10] adapted our method to
show that if u0 ∈ Ḣ1(R3) and M(u0)E(u0) < M(Q)E(Q), where

M(u0) =
∫
|u0|2, E(u0) =

1
2

∫
|∇u0|2 −

1
4

∫
|u0|4,

and Q is the ground state, i.e., the positive solution to the elliptic equation

−Q+4Q+ |Q|2Q = 0,

then if ||u0||L2 ||∇u0||L2 > ||Q||L2 ||∇Q||L2 , we have “blow-up” in finite time, while
if ||u0||L2 ||∇u0||L2 < ||Q||L2 ||∇Q||L2 , then u exists for all time and scatters. In
joint work with Merle [24] we have considered the defocusing case. We have shown,
using this circle of ideas, that if sup0<t<T+(u0) ||u(t)||Ḣ1/2 <∞, then T+(u0) = +∞
and u scatters. We would like to point out that the fact that T+(u0) = +∞ is
analogous to the L3,∞ result of Escauriaza–Seregin–Sverak for Navier–Stokes [11].



7

We now turn to the proofs of Theorems 1 and 2. We start with Theorem 1.
We are thus considering

i ∂tu+4u+ |u|4/N−2u = 0, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1.

(4)

Let us start with a quick review of the “local Cauchy problem” theory. Besides the
norm ‖f‖S(I) = ‖f‖

L
2(N+2)/N−2
I L

2(N+2)/N−2
x

introduced earlier, we need the norm
‖f‖W (I) = ‖f‖

L
2(N+2)/N−2
I L

2(N+2)/N2+4
x

.

Theorem 3 ([7], [25]). Assume that u0 ∈ Ḣ1(RN ), ‖u0‖Ḣ1 ≤ A. Then, for 3 ≤
N ≤ 6, there exists δ = δ(A) > 0 such that if

∥∥eit∆u0

∥∥
S(I)
≤ δ, 0 ∈ I̊, there exists

a unique solution to (4) in RN × I, with u ∈ C(I; Ḣ1) and ‖∇u‖W (I) < +∞,

‖u‖S(I) ≤ 2δ. Moreover, the mapping u0 ∈ Ḣ1(RN )→ u ∈ C(I; Ḣ1) is Lipschitz.

The proof is by fixed point. The key ingredients are the following “Strichartz
estimates” [43], [21]:

∥∥∇eit∆u0

∥∥
W (−∞,+∞)

≤ C ‖u0‖Ḣ1∥∥∥∇ ∫ t0 ei(t−t′)∆g(·, t′)dt′
∥∥∥
W (−∞,+∞)

≤ C ‖g‖
L2
tL

2N/N+2
x

supt
∥∥∥∇ ∫ t0 ei(t−t′)∆g(·, t′)dt′

∥∥∥
L2
≤ C ‖g‖

L2
tL

2N/N+2
x

(5)

and the following Sobolev embedding

‖v‖S(I) ≤ C ‖∇v‖W (I) , (6)

and the observation that
∣∣∇(|u|4/N−2u)

∣∣ ≤ C|∇u| |u|4/N−2, so that∥∥∥∇(|u|4/N−2u)
∥∥∥
L2
IL

2N/N+2
x

. ‖u‖4/N−2
S(I) ‖∇u‖W (I) .

Remark 2. Because of (5), (6), there exists δ̃ such that if ‖u0‖Ḣ1 ≤ δ̃, the hypoth-
esis of the Theorem is verified for I = (−∞,+∞). Moreover, given u0 ∈ Ḣ1, we
can find I such that

∥∥eit∆u0

∥∥
S(I)

< δ, so that the Theorem applies. It is then easy

to see that given u0 ∈ Ḣ1, there exists a maximal interval I = (−T−(u0), T+(u0))
where u ∈ C(I ′; Ḣ1) ∩ {∇u ∈ W (I ′)} of all I ′ ⊂⊂ I is defined. We call I the
maximal interval of existence. It is easy to see that for all t ∈ I, we have

E(u(t)) =
1
2

∫
|∇u(t)|2 − 1

2∗

∫
|u|2

∗
= E(u0).

We also have the “standard finite time blow-up criterion”: if T+(u0) < ∞, then
||u||S([0,T+(u0)) = +∞.
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We next turn to another fundamental result in the “local Cauchy theory”,
the so called “Perturbation Theorem”.

Perturbation Theorem 4 (see [49], [25], [22]). Let I = [0, L), L ≤ +∞, and ũ
defined on RN × I be such that

sup
t∈I
‖ũ‖Ḣ1 ≤ A, ‖ũ‖S(I) ≤M, ‖∇ũ‖W (I) < +∞

and verify (in the sense of the integral equation)

i ∂tũ+4ũ+ |ũ|4/N−2ũ = e on RN × I,

and let u0 ∈ Ḣ1 be such that ‖u0 − ũ(0)‖Ḣ1 ≤ A′. Then there exists ε0 = ε0(M,A,
A′) such that, if 0 ≤ ε ≤ ε0 and ‖∇e‖

L2
IL

2N/N+2
x

≤ ε,
∥∥eit∆[u0 − ũ(0)]

∥∥
S(I)

≤ ε,

then there exists a unique solution u to (4) on RN × I, such that

‖u‖S(I) ≤ C(A,A′,M) and sup
t∈I
‖u(t)− ũ(t)‖Ḣ1 ≤ C(A,A′,M)(A′ + ε)β ,

where β > 0.

For the details of the proof, see [22]. This result has several important con-
sequences:

Corollary 1. Let K ⊂ Ḣ1 be such that K is compact. Then there exist T+,K , T−,K
such that for all u0 ∈ K we have T+(u0) ≥ T+,K , T−(u0) ≥ T−,K .

Corollary 2. Let ũ0 ∈ Ḣ1, ‖ũ0‖Ḣ1 ≤ A, and let ũ be the solution of (4), with
maximal interval (−T−(ũ0), T+(ũ0)). Assume that u0,n → ũ0 in Ḣ1, with corre-
sponding solution un. Then T+(ũ0) ≤ limT+(u0,n), T−(ũ0) ≤ limT−(u0,n) and
for t ∈ (−T−(ũ0), T+(ũ0)), un(t)→ ũ(t) in Ḣ1.

Before we start with our sketch of the proof of Theorem 1, we will review the
classic argument of Glassey [15] for blow-up in finite time. Thus, assume u0 ∈ Ḣ1,∫
|x|2|u0(x)|2 dx <∞ and E(u0) < 0. Let I be the maximal interval of existence.

One easily shows that, for t ∈ I, y(t) =
∫
|x|2|u(x, t)|2 dx < +∞. In fact,

y′(t) = 4 Im
∫
u∇u · x, and y′′(t) = 8

[∫
|∇u(x, t)|2 −

∫
|u(x, t)|2

∗
]
.

Hence, if E(u0) < 0, E(u(t)) = E(u0) < 0, so that

1
2

∫
|∇u(t)|2 − |u(t)|2

∗
= E(u0) +

(
1
2∗
− 1

2

)∫
|u(t)|2

∗
≤ E(u0) < 0,

and y′′(t) < 0. But then, if I is infinite, since y(t) > 0 we obtain a contradiction.
We now start with our sketch of the proof of Theorem 1.
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Step 1: Variational estimates. (These are not needed in defocusing problems.)
Recall that W (x) = (1 + |x|2/N(N − 2))−(N−2)/2 is a stationary solution of (4).
It solves the elliptic equation 4W + |W |4/N−2W = 0, W ≥ 0, W is radially
decreasing, W ∈ Ḣ1. By the invariances of the equation,

Wθ0,x0,λ0(x) = eiθ0λ
N−2/2
0 W (λ0(x− x0))

is still a solution. Aubin and Talenti [1], [46] gave the following variational charac-
terization of W : let CN be the best constant in the Sobolev embedding ||u||L2∗ ≤
CN ||∇u||L2 . Then ||u||L2∗ = CN ||∇u||L2 , u 6≡ 0, if and only if u = Wθ0,x0,λ0 for
some (θ0, x0, λ0). Note that by the elliptic equation,

∫
|∇W |2 =

∫
|W |2∗ . Also,

CN ||∇W || = ||W ||L2∗ , so that

C2
N ||∇W ||2 =

(∫
|∇W |2

)N−2
N

.

Hence,
∫
|∇W |2 = 1/CNN , and

E(W ) =
(

1
2
− 1

2∗

)∫
|∇W |2 =

1
NCNN

.

Lemma 1. Assume that ||∇v|| < ||∇W || and that E(v) ≤ (1 − δ0)E(W ), δ0 > 0.
Then there exists δ = δ(δ0) so that:

i) ||∇v||2 ≤ (1− δ)||∇W ||2.

ii)
∫
|∇v|2 − |v|2

∗
≥ δ||∇v||2.

iii) E(v) ≥ 0.

Proof. Let

f(y) =
1
2
y − C2∗

N

2∗
y2∗/2, y = ||∇v||2.

Note that f(0) = 0, f(y) > 0 for y near 0, y > 0, and that

f ′(y) =
1
2
− C2∗

N

2∗
y2∗/2−1,

so that f ′(y) = 0 if and only if y = yc = 1
CN

= ||∇W ||2. Also, f(yc) = 1
NCN

=
E(W ). Since 0 ≤ y < yc, f(y) ≤ (1 − δ0)f(yc), f is non-negative and strictly
increasing between 0 and yc, and f ′′(yc) 6= 0, we have 0 ≤ f(y), y ≤ (1 − δ)yc =
(1− δ)||∇W ||2. This shows i).



10

For ii), note that∫
|∇v|2 − |v|2

∗
≥

∫
|∇v|2 − C2∗

N

(∫
|∇v|2

)2∗/2

=
∫
|∇v|2

[
1− C2∗

N

(∫
|∇v|2

)2/N−2
]

≥
∫
|∇v|2

[
1− C2∗

N (1− δ)2/N−2

(∫
|∇W |2

)2/N−2
]

=
∫
|∇v|2

[
1− (1− δ)2/N−2

]
,

which gives ii).
Note from this that if ||∇u0|| < ||∇W ||, then E(u0) ≥ 0, i.e., iii) holds. �

This static lemma immediately has dynamic consequences.

Corollary 3 (Energy Trapping). Let u be a solution of (4) with maximal interval I,
||∇u0|| < ||∇W ||, E(u0) < E(W ). Choose δ0 > 0 such that E(u0) ≤ (1−δ0)E(W ).
Then, for each t ∈ I, we have:

i) ||∇u(t)||2 ≤ (1− δ)||∇W ||, E(u(t)) ≥ 0.

ii)
∫
|∇u(t)|2 − |u(t)|2

∗
≥ δ

∫
|∇u(t)|2 (“coercivity”).

iii) E(u(t)) ≈ ||∇u(t)||2 ≈ ||∇u0||2, with comparability constants which depend
on δ0 (“uniform bound”).

Proof. The statements follow from continuity of the flow, conservation of energy
and the previous Lemma. �

Note that iii) gives uniform bounds on ||∇u(t)||. However, this is a long way
from giving Theorem 1.
Remark 3. Let u0 ∈ Ḣ1, E(u0) < E(W ), but ||∇u0||2 > ||∇W ||2. If we choose δ0
so that E(u0) ≤ (1 − δ0)E(W ), we can conclude, as in the proof of the Lemma,
that

∫
|∇u(t)|2 ≥ (1 + δ)

∫
|∇W |2, t ∈ I. But then,∫

|∇u(t)|2 − |u(t)|2
∗

= 2∗E(u0)− 2
N − 2

∫
|∇u|2

≤ 2∗E(W )− 2
N − 2

1
CNN
− 2δ
N − 2

1
CNN

= − 2δ
(N − 2)CNN

< 0.

Hence, if
∫
|x|2|u0(x)|2 dx <∞, Glassey’s proof shows that I cannot be infinite. If

u0 is radial, u0 ∈ L2, using a “local virial identity” (which we will see momentarily)
one can see that the same result holds.
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Step 2: Concentration-compactness procedure. We now turn to the proof of i) in
Theorem 1. By our variational estimates, if E(u0) < E(W ), ||∇u0||2 < ||∇W ||2,
if δ0 is chosen so that E(u0) ≤ (1− δ0)E(W ), recall that

E(u(t)) ≈ ||∇u(t)||2 ≈ ||∇u0||2,

t ∈ I, with constants depending only on δ0. Recall also that if ||∇u0||2 < ||∇W ||2,
E(u0) ≥ 0. It now follows from the “local Cauchy theory” that if ||∇u0||2 <
||∇W ||2 and E(u0) ≤ η0, η0 small, then I = (−∞,+∞) and ||u||S(−∞,+∞) < ∞,
so that u scatters. Consider now

G = {E : 0 < E < E(W ) :

if ||∇u0||2 < ||∇W ||2 and E(u0) < E, then ‖u‖S(I) <∞}

and Ec = supG. Then 0 < η0 ≤ Ec ≤ E(W ) and if ||∇u0||2 < ||∇W ||2, E(u0) <
Ec, I = (−∞,+∞), u scatters and Ec is optimal with this property. Theorem 1 i)
is the statement Ec = E(W ). We now assume Ec < E(W ) and will reach a
contradiction. We now develop the concentration-compactness argument:

Proposition 1. There exists u0,c ∈ Ḣ1, ||∇u0,c||2 < ||∇W ||2, with E(u0,c) = Ec,
such that, for the corresponding solution uc, we have ‖uc‖S(I) = +∞.

Proposition 2. For any uc as in Proposition 1, with (say) ||uc||S(I+) = +∞, I+ =
I ∩ [0,+∞), there exist x(t), t ∈ I+, λ(t) ∈ R+, t ∈ I+, such that

K =

{
v(x, t) =

1

λ(t)N−2/2
u

(
x− x(t)
λ(t)

, t

)
, t ∈ I+

}

has compact closure in Ḣ1.

The proof of Propositions 1 and 2 follows a “general procedure” which uses
a “profile decomposition”, the variational estimates and the “Perturbation Theo-
rem”. The idea of the decomposition is somehow a time-dependent version of the
concentration-compactness method of P. L. Lions, when the “local Cauchy theory”
is done in the critical space. It was introduced independently by Bahouri–Gérard
[2] for the wave equation and by Merle–Vega for the L2 critical NLS [35]. The ver-
sion needed for Theorem 1 is due to Keraani [27]. This is the evolution analog of
the elliptic “bubble decomposition”, which goes back to work of Brézis–Coron [5].

Theorem 5 (Keraani [27]). Let {v0,n} ⊂ Ḣ1, with ‖v0,n‖Ḣ1 ≤ A. Assume that∥∥eit∆v0,n

∥∥
S(−∞,+∞)

≥ δ > 0. Then there exists a subsequence of {v0,n} and a

sequence {V0,j}∞j=1 ⊂ Ḣ1 and triples {(λj,n, xj,n, tj,n)} ⊂ R+ × RN × R, with

λj,n
λj′,n

+
λj′,n
λj,n

+
|tj,n − tj′,n|

λ2
j,n

+
|xj,n − xj′,n|

λj,n
−−−−→
n→∞

∞,

for j 6= j′ (we say that {(λj,n, xj,n, tj,n)} is orthogonal), such that
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i) ‖V0,1‖Ḣ1 ≥ α0(A) > 0.

ii) If V lj (x, t) = eit∆V0,j, then we have, for each J ,

v0,n =
J∑
j=1

1

λ
N−2/2
j,n

V lj

(
x− xj,n
λj,n

,− tj,n
λ2
j,n

)
+ wJn ,

where lim
n

∥∥eit∆wJn∥∥S(−∞,+∞)
−−−−→
J→∞

0, and for each J ≥ 1 we have

iii) ||∇v0,n||2 =
J∑
j=1

||∇V0,j ||2 + ||∇wJn ||2 + o(1) as n→∞ and

E(v0,n) =
J∑
j=1

E

(
V lj

(
− tj,n
λ2
j,n

))
+ E(wJn) + o(1) as n→∞.

Further general remarks:
Remark 4. Because of the continuity of u(t), t ∈ I, in Ḣ1, in Proposition 2 we can
construct λ(t), x(t) continuous in [0, T+(u0)), with λ(t) > 0.
Remark 5. Because of scaling and the compactness of K above, if T+(u0,c) <∞,
one always has that λ(t) ≥ C0(K)/(T+(u0, c)− t)

1
2 .

Remark 6. If T+(u0,c) = +∞, we can always find another (possibly different) crit-
ical element vc with a corresponding λ̃ so that λ̃(t) ≥ A0 > 0 for t ∈ [0, T+(v0,c)).
(Again by compactness of K.)
Remark 7. One can use the “profile decomposition” to also show that there exists
a decreasing function g : (0, Ec] → [0,+∞) so that if ||∇u0||2 < ||∇W ||2 and
E(u0) ≤ Ec − η, then ‖u‖S(−∞,+∞) ≤ g(η).
Remark 8. In the “profile decomposition”, if all the v0,n are radial, the V0,j can
be chosen radial and xj,n ≡ 0. We can repeat our procedure restricted to radial
data and conclude the analog of Propositions 1 and 2 with x(t) ≡ 0.

The final step in the proof is then:

Step 3: Rigidity Theorem.

Theorem 6 (Rigidity). Let u0 ∈ Ḣ1, E(u0) < E(W ), ||∇u0||2 < ||∇W ||2. Let u
be the solution of (4), with maximal interval I = (−T−(u0), T+(u0)). Assume that
there exists λ(t) > 0, defined for t ∈ [0, T+(u0)), such that

K =

{
v(x, t) =

1

λ(t)N−2/2
u

(
x

λ(t)
, t

)
, t ∈ [0, T+(u0))

}
has compact closure in Ḣ1. Assume also that, if T+(u0) <∞,

λ(t) ≥ C0(K)/(T+(u0, c)− t)
1
2 and

if T+(u0) =∞, that λ(t) ≥ A0 > 0 for t ∈ [0,+∞). Then T+(u0) = +∞, u0 ≡ 0.
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To prove this, we split two cases:

Case 1: T+(u0) < +∞. (So that λ(t)→ +∞ as t→ T+(u0).)
Fix φ radial, φ ∈ C∞0 , φ ≡ 1 on |x| ≤ 1, suppφ ⊂ {|x| < 2}. Set φR(x) =

φ(x/R) and define

yR(t) =
∫
|u(x, t)|2φR(x) dx.

Then y′r(t) = 2 Im
∫
u∇u∇φR, so that

|y′R(t)| ≤ C
(∫
|∇u|2

)1/2(∫ |u|2
|x|2

)1/2

≤ C||∇W ||2,

by Hardy’s inequality and our variational estimates. Note that C is independent
of R. Next, we note that, for each R > 0,

lim
t↑T+(u0)

∫
|x|<R

|u(x, t)|2 dx = 0.

In fact, u(x, t) = λ(t)N−2/2v(λ(t)x, t), so that∫
|x|<R

|u(x, t)|2dx = λ(t)−2

∫
|y|<Rλ(t)

|v(y, t)|2 dy

= λ(t)−2

∫
|y|<εRλ(t)

|v(y, t)|2 dy

+ λ(t)−2

∫
εRλ(t)≤|y|<Rλ(t)

|v(y, t)|2 dy

= A+B.

A ≤ λ(t)−2(εRλ(t))2||v||2L2∗ ≤ Cε2R2||∇W ||2,

which is small with ε.

B ≤ λ(t)−2(Rλ(t))2||v||2L2∗ (|y|≥εRλ(t)) −−−−−−→
t→T+(u0)

0,

(since λ(t) ↑ +∞ as t → T+(u0)) using the compactness of K. But then yR(0) ≤
CT+(u0)||∇W ||2, by the fundamental theorem of calculus. Thus, letting R→∞,
we see that u0 ∈ L2, but then, using the conservation of the L2 norm, we see that
||u0||L2 = ||u(T+(u0))||L2 = 0, so that u0 ≡ 0.

Case 2: T+(u0) = +∞. First note that the compactness of K, together with
λ(t) ≥ A0 > 0, gives that, given ε > 0, there exists R(ε) > 0 such that, for all
t ∈ [0,+∞), ∫

|x|>R(ε)

|∇u|2 + |u|2
∗

+
|u|2

|x|2
≤ ε.
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Pick δ0 > 0 so that E(u0) ≤ (1 − δ0)E(W ). Recall that, by our variational esti-
mates, we have that

∫
|∇u(t)|2 − |u(t)|2∗ ≥ Cδ0 ||∇u0||2L2 . If ||∇u0||L2 6= 0, using

the smallness of tails, we see that, for R > R0,∫
|x|<R

|∇u(t)|2 − |u(t)|2
∗
≥ Cδ0 ||∇u0||2L2 .

Choose now ψ ∈ C∞0 radial with ψ(x) = |x|2 for |x| ≤ 1, suppψ ⊂ {|x| ≤ 2}.
Define

zR(t) =
∫
|u(x, t)|2R2ψ(x/R) dx.

Similar computations to Glassey’s blow-up proof give:

z′R(t) = 2R Im
∫
u∇u∇ψ(x/R)

and

z′′R(t) = 4
∑
l,j

Re
∫
∂xl ∂xjψ(x/R) ∂xlu ∂xju

− 1
R2

∫
42ψ(x/R)|u|2 − 4

N

∫
4ψ(x/R)|u|2

∗
.

Note that |z′R(t)| ≤ Cδ0R
2||∇u0||2, by Cauchy–Schwartz, Hardy’s inequality and

our variational estimates. On the other hand,

z′′R(t) ≥

[∫
|x|≤R

|∇u(t)|2 − |u(t)|2
∗

]

− C

(∫
R≤|x|≤2R

|∇u(t)|2 +
|u|2

|x|2
+ |u(t)|2

∗

)
≥ C||∇u0||2,

for R large. Integrating in t, we obtain z′R(t)− z′R(0) ≥ Ct||∇u0||2, but

|z′R(t)− z′R(0)| ≤ 2CR2||∇u0||2,

which is a contradiction for t large, proving Theorem 1 i).

Remark 9. In the defocusing case, the proof is easier since the variational estimates
are not needed.

Remark 10. It is quite likely that for N = 3, examples similar to those by
P. Raphäel [38] can be constructed, of radial data u0 for which T+(u0) < ∞
and u blows up exactly on a sphere.
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We now turn to Theorem 2. We thus consider
∂2
t u−4u = |u|4/N−2u, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1(Rn),

∂tu
∣∣
t=0

= u1 ∈ L2(Rn), N ≥ 3.

(7)

Recall that W (x) =
(
1 + |x|2/N(N − 2)

)−(N−2)/2 is a static solution that does
not scatter. The general scheme of the proof is similar to the one for Theorem 1.
We start out with a brief review of the “local Cauchy problem”. We first consider
the asociated linear problem,

∂2
tw −4w = h,

w
∣∣
t=0

= w0 ∈ Ḣ1(Rn),

∂tw
∣∣
t=0

= w1 ∈ L2(RN ).

(8)

As is well known (see [42] for instance), the solution is given by

w(x, t) = cos
(
t
√
−4

)
w0 + (−4)−1/2 sin

(
t
√
−4

)
w1

+
∫ t

0

(−4)−1/2 sin
(

(t− s)
√
−4

)
h(s) ds

= S(t)((w0, w1)) +
∫ t

0

(−4)−1/2 sin
(

(t− s)
√
−4

)
h(s) ds.

The following are the relevant Strichartz estimates: for an interval I ⊂ R, let

‖f‖S(I) = ‖f‖
L

2(N+1)/N−2
I L

2(N+1)/N−2
x

,

‖f‖W (I) = ‖f‖
L

2(N+1)/N−1
I L

2(N+1)/N−1
x

.

Then (see [14], [23])

supt ‖(w(t), ∂tw(t))‖Ḣ1×L2 +
∥∥D1/2w

∥∥
W (−∞,+∞)

+

+
∥∥∂tD−1/2w

∥∥
W (−∞,+∞)

+ ‖w‖S(−∞,+∞) +

+ ‖w‖
L

(N+2)/N−2
t L

2(N+2)/N−2
x

≤

≤ C
{
‖(w0, w1)‖Ḣ1×L2 + ‖w‖

L
2(N+1)/N+3
t L

2(N+1)/N+3
x

}
.

(9)

Because of the appearance of D1/2 in these estimates, we also need to use the
following version of the chain rule for fractional derivatives (see [26]).
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Lemma 2. Assume F ∈ C2, F (0) = F ′(0) = 0, and that for all a, b we have
|F ′(a+ b)| ≤ C {|F ′(a)|+ |F ′(b)|} and |F ′′(a+ b)| ≤ C {|F ′′(a)|+ |F ′′(b)|}. Then,
for 0 < α < 1, 1

p = 1
p1

+ 1
p2

, 1
p = 1

r1
+ 1

r2
+ 1

r3
, we have

i) ‖DαF (u)‖Lp ≤ C ‖F
′(u)‖Lp1 ‖D

αu‖Lp2 ,

ii) ‖Dα(F (u)− F (v))‖Lp ≤ C [‖F ′(u)‖Lp1 + ‖F ′(v)‖Lp1 ] ‖Dα(u− v)‖Lp2
+C [‖F ′′(u)‖Lr1 + ‖F ′′(v)‖Lr1 ] [‖Dαu‖Lr2 + ‖Dαv‖Lr2 ] ‖u− v‖Lr3 .

Using (9) and this Lemma, one can now use the same argument as for (4) to
obtain:

Theorem 7 ([14], [20], [41] and [23]). Assume that

(u0, u1) ∈ Ḣ1 × L2, ‖(u0, u1)‖Ḣ1×L2 ≤ A.

Then, for 3 ≤ N ≤ 6, there exists δ = δ(A) > 0 such that if ‖S(t)(u0, u1)‖S(I) ≤ δ,
0 ∈ I̊, there exists a unique solution to (7) in RN×I, with (u, ∂tu) ∈ C(I; Ḣ1 × L2)
and

∥∥D1/2u
∥∥
W (I)

+
∥∥∂tD−1/2u

∥∥
W (I)

<∞, ‖u‖S(I) ≤ 2δ. Moreover, the mapping

(u0, u1) ∈ Ḣ1 × L2 → (u, ∂tu) ∈ C(I; Ḣ1 × L2) is Lipschitz.

Remark 11. Again, using (9), if ‖(u0, u1)‖Ḣ1×L2 ≤ δ̃, the hypothesis of the The-
orem is verified for I = (−∞,+∞). Moreover, given (u0, u1) ∈ Ḣ1 × L2, we can
find I̊ 3 0 so that the hypothesis is verified on I. One can then define a maximal
interval of existence I = (−T−(u0, u1), T+(u0, u1)), similarly to the case of (4).
We also have the “standard finite time blow-up criterion”: if T+(u0, u1) < ∞,
then ‖u‖S(0,T+(u0,u1)) = +∞. Also, if T+(u0, u1) = +∞, u scatters at +∞ (i.e.,
∃(u+

0 , u
+
1 ) ∈ Ḣ1 × L2 such that

∥∥(u(t), ∂tu(t))− S(t)(u+
0 , u

+
1 )
∥∥
Ḣ1×L2 −−−−→

t↑+∞
0) if

and only if ‖u‖S(0,+∞) < +∞. Moreover, for t ∈ I, we have

E((u0, u1)) =
1
2

∫
|∇u0|2 +

1
2

∫
u2

1 −
1
2∗

∫
|u0|2

∗
= E((u(t), ∂tu(t))).

It turns out that for (7) there is another very important conserved quantity in
the energy space, namely momentum. This is crucial for us to be able to treat
non-radial data. This says that, for t ∈ I,

∫
∇u(t) · ∂tu(t) =

∫
∇u0 · u1. Finally,

the analog of the “Perturbation Theorem” also holds in this context (see [22]). All
the corollaries of the Perturbation Theorem also hold.

Remark 12 (Finite speed of propagation). Recall that if R(t) is the forward fun-
damental solution for the linear wave equation, the solution for (8) is given by
(see [42])

w(t) = ∂tR(t) ∗ w0 +R(t) ∗ w1 −
∫ t

0

R(t− s) ∗ h(s) ds,
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where ∗ stands for convolution in the x variable. The finite speed of propagation
is the statement that suppR( · , t), supp ∂tR( · , t) ⊂ B(0, t). Thus, if suppw0 ⊂
CB(x0, a), suppw1 ⊂ CB(x0, a), supph ⊂ C[

⋃
0≤t≤aB(x0, a− t)×{t}], then w ≡ 0

on
⋃

0≤t≤aB(x0, a − t) × {t}. This has important consequences for solutions of
(7). If (u0, u1) ≡ (u′0, u

′
1) on B(x0, a), then the corresponding solutions agree on⋃

0≤t≤aB(x0, a− t)× {t} ∩ RN × (I ∩ I ′).
We now proceed with the proof of Theorem 2. As in the case of (4), the proof

is broken up in three steps.

Step1: Variational estimates. Here these are immediate from the corresponding
ones in (4). The summary is (we use the notation E(v) = 1

2

∫
|∇v|2 − 1

2∗

∫
|v|2∗):

Lemma 3. Let (u0, u1) ∈ Ḣ1 × L2 be such that E((u0, u1)) ≤ (1 − δ0)E((W, 0)),
||∇u0|2 < ||∇W ||2. Let u be the corresponding solution of (7), with maximal in-
terval I. Then there exists δ = δ(δ0) > 0 such that, for t ∈ I, we have

i) ||∇u(t)|| ≤ (1− δ)||∇W ||.

ii)
∫
|∇u(t)|2 − |u(t)|2

∗
≥ δ

∫
|∇u(t)|2.

iii) E(u(t)) ≥ 0 (and here E((u, ∂tu)) ≥ 0).

iv) E((u, ∂tu)) ≈ ‖(u(t), ∂tu(t))‖2Ḣ1×L2 ≈ ‖(u0, u1)‖2Ḣ1×L2 , with comparability
constants depending only on δ0.

Remark 13. If E((u0, u1)) ≤ (1−δ0)E((W, 0)), ||∇u0||2 > ||∇W ||2, then, for t ∈ I,
‖∇u(t)‖2 ≥ (1 + δ) ‖∇W‖2. This follows from the corresponding result for (4).

We now turn to the proof of ii) in Theorem 2. We will do it for the case when
‖u0‖L2 <∞. For the general case, see [23]. We know that, in the situation of ii),
we have ∫

|∇u(t)|2 ≥ (1 + δ)
∫
|∇W |2, t ∈ I,

E((W, 0)) ≥ E((u(t), ∂tu)) + δ̃0.

Thus,

1
2∗

∫
|u(t)|2

∗
≥ 1

2

∫
(∂tu(t))2 +

1
2

∫
|∇u(t)|2 − E((W, 0)) + δ̃0,

so that∫
|u(t)|2

∗
≥ N

N − 2

∫
(∂tu(t))2 +

N

N − 2

∫
|∇u(t)|2 − 2∗E((W, 0)) + 2∗δ̃0.

Let y(t) =
∫
|u(t)|2, so that y′(t) = 2

∫
u(t) ∂tu(t). A simple calculation gives

y′′(t) = 2
∫ {

(∂tu)2 − |∇u(t)|2 + |u(t)|2
∗
}
.
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Thus,

y′′(t) ≥ 2
∫

(∂tu)2 +
2N
N − 2

∫
(∂tu)2 − 2 · 2∗E((W, 0)) +

+ ˜̃
δ0 +

2N
N − 2

∫
|∇u(t)|2 − 2

∫
|∇u(t)|2 =

=
4(N − 1)
N − 2

∫
(∂tu)2 +

4
N − 2

∫
|∇u(t)|2 −

− 4
N − 2

∫
|∇W |2 + ˜̃

δ0 ≥

≥ 4(N − 1)
N − 2

∫
(∂tu)2 + ˜̃

δ0.

If I ∩ [0,+∞) = [0,+∞), there exists t0 > 0 so that y′(t0) > 0, y′(t) > 0, t > t0.
For t > t0 we have

y(t)y′′(t) ≥ 4(N − 1)
N − 2

∫
(∂tu)2

∫
u2 ≥

(
N − 1
N − 2

)
y′(t)2,

so that
y′′(t)
y′(t)

≥
(
N − 1
N − 2

)
y′(t)
y(t)

,

or
y′(t) ≥ C0y(t)(N−1)/(N−2), for t > t0.

But, since N − 1/N − 2 > 1, this leads to finite time blow-up, a contradiction.
We next turn to the proof of i) in Theorem 2.

Step 2: Concentration-compactness procedure. Here we proceed initially in an
identical manner as in the case of (4), replacing the “profile decomposition” of
Keraani [27] with the corresponding one for the wave equation, due to Bahouri–
Gérard [2]. Thus, arguing by contradiction, we find a number Ec, with 0 < η0 ≤
Ec < E((W, 0)) with the property that if E((u0, u1)) < Ec, ‖∇u0‖2 < ‖∇W‖2,
‖u‖S(I) < ∞ and Ec is optimal with this property. We will see that this leads to
a contradiction. As for (4), we have:

Proposition 3. There exists

(u0,c, u1,c) ∈ Ḣ1 × L2, ‖∇u0,c‖2 < ‖∇W‖2 , E((u0,c, u1,c)) = Ec

and such that for the corresponding solution uc on (7) we have ‖uc‖S(I) = +∞.

Proposition 4. For any uc as in Proposition 3, with (say) ‖uc‖S(I+) = +∞, I+ =
I ∩ [0,+∞), there exists x(t) ∈ RN , λ(t) ∈ R+, t ∈ I+, such that

K =
{
v(x, t) =

(
1

λ(t)N−2/2uc

(
x−x(t)
λ(t) , t

)
, 1
λ(t)N/2

∂tuc

(
x−x(t)
λ(t) , t

))
: t ∈ I+

}
has compact closure in Ḣ1 × L2.
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Remark 14. As in the case of (4), in Proposition 4 we can construct λ(t), x(t)
continuous in [0, T+((u0,c, u1,c))). Moreover, by scaling and compactness of K,
if T+((u0,c, u1,c)) < ∞, we have λ(t) ≥ C0(K)/(T+((u0,c, u1,c)) − t). Also, if
T+((u0,c, u1,c)) = +∞, we can always find another (possibly different) critical ele-
ment vc, with a corresponding λ̃ so that λ̃(t) ≥ A > 0, for t ∈ [0, T+((v0,c, v1,c))),
using the compactness of K. We can also find g : (0, Ec]→ [0,+∞) decreasing so
that if ‖∇u0‖2 < ‖∇W‖2 and E((u0,c, u1,c)) ≤ Ec− η, then ‖u‖S(−∞,+∞) ≤ g(η).

Up to here, we have used, in Step 2, only Step 1 and “general arguments”.
To proceed further we need to use specific features of (7) to establish further
properties of critical elements.

The first one is a consequence of the finite speed of propagation and the
compactness of K.

Lemma 4. Let uc be a critical element as in Proposition 4, with T+((u0,c, u1,c)) <
+∞. (We can assume, by scaling, that T+((u0,c, u1,c)) = 1.) Then there exists
x ∈ RN such that suppuc( · , t), supp ∂tuc( · , t) ⊂ B(x, 1− t), 0 < t < 1.

In order to prove this Lemma, we will need the following consequence of the
finite speed of propagation:
Remark 15. Let (u0, u1) ∈ Ḣ1 × L2, ‖(u0, u1)‖Ḣ1×L2 ≤ A. If, for some M > 0
and 0 < ε < ε0(A), we have∫

|x|≥M
|∇u0|2 + |u1|2 +

|u0|2

|x|2
≤ ε,

then for 0 < t < T+(u0, u1) we have∫
|x|≥ 3

2M+t

|∇u(t)|2 + |∂tu(t)|2 + |u(t)|2
∗

+
|u(t)|2

|x|2
≤ Cε.

Indeed, choose ψM ∈ C∞, ψM ≡ 1 for |x| ≥ 3
2M , with ψM ≡ 0 for

|x| ≤ M . Let u0,M = u0ψM , u1,M = u1ψM . From our assumptions, we have
‖(u0,M , u1,M )‖Ḣ1×L2 ≤ Cε. If Cε0 < δ̃, where δ̃ is as in the “local Cauchy the-
ory”, the corresponding solution uM of (7) has maximal interval (−∞,+∞) and
supt∈(−∞,+∞) ‖(uM (t), ∂tuM (t))‖Ḣ1×L2 ≤ 2Cε. But, by finite speed of propaga-
tion, uM ≡ u for |x| ≥ 3

2M + t, t ∈ [0, T+(u0, u1)), which proves the Remark.
We turn to the proof of the Lemma. Recall that λ(t) ≥ C0(K)/(1 − t). We

claim that, for any R0 > 0,

lim
t↑1

∫
|x+x(t)/λ(t)|≥R0

|∇uc(x, t)|2 + |∂tuc(x, t)|2 +
|uc(x, t)|2

|x|2
= 0.

Indeed, if ~v(x, t) = 1
λ(t)N/2

(
∇uc

(
x−x(t)
λ(t) , t

)
, ∂tuc

(
x−x(t)
λ(t) , t

))
,∫

|x+x(t)/λ(t)|≥R0

|∇uc(x, t)|2 + |∂tuc(x, t)|2 =
∫
|y|≥λ(t)R0

|~v(x, t)|2 dy −−→
t↑1

0,
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because of the compactness of K and the fact that λ(t)→ +∞ as t→ 1. Because
of this fact, using the Remark backward in time, we have, for each s ∈ [0, 1),
R0 > 0,

lim
t↑1

∫
|x+x(t)/λ(t)|≥ 3

2R0+(t−s)
|∇uc(x, s)|2 + |∂tuc(x, s)|2 = 0.

We next show that |x(t)/λ(t)| ≤ M , 0 ≤ t < 1. If not, we can find tn ↑ 1
so that |x(tn)/λ(tn)| → +∞. Then, for R > 0, {|x| ≤ R} ⊂ {|x + x(tn)/λ(tn)| ≥
3
2R+ tn} for n large, so that, passing to the limit in n, for s = 0, we obtain∫

|x|≤R
|∇u0,c|2 + |u1,c|2 = 0,

a contradiction.
Finally, pick tn ↑ 1 so that x(tn)/λ(tn)→ −x. Observe that, for every η0 > 0,

for n large enough, for all s ∈ [0, 1), {|x− x| ≥ 1 + η0 − s} ⊂ {|x+ x(tn)/λ(tn)| ≥
3
2R0 + (tn − s)}, for some R0 = R0(η0) > 0. From this we conclude that∫

|x−x0|≥1+η0−s
|∇u(x, s)|2 + |∂su(x, s)|2 dx = 0,

which gives the claim.
Note that, after translation, we can asume that x = 0. We next turn to a

result which is fundamental for us to be able to treat non-radial data.

Theorem 8. Let (u0,c, u1,c) be as in Proposition 4, with λ(t), x(t) continuous.
Assume that either T+(u0,c, u1,c) < ∞ or T+(u0,c, u1,c) = +∞, λ(t) ≥ A0 > 0.
Then ∫

∇u0,c · u1,c = 0.

In order to carry out the proof of this Theorem, a further linear estimate is
needed:

Lemma 5. Let w solve the linear wave equation
∂2
tw −4w = h ∈ L1

tL
2
x(RN+1)

w
∣∣
t=0

= w0 ∈ Ḣ1(Rn)

∂tw
∣∣
t=0

= w1 ∈ L2(RN ).

Then, for |a| ≤ 1/4, we have

sup
t

∥∥∥∥(∇w( x1 − at√
1− a2

, x′,
t− ax1√

1− a2

)
, ∂tw

(
x1 − at√

1− a2
, x′,

t− ax1√
1− a2

))∥∥∥∥
L2(dx1dx′)

≤ C
{
‖w0‖Ḣ1 + ‖w1‖L2 + ‖h‖L1

tL
2
x

}
.
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The simple proof is omitted; see [23] for the details. Note that if u is a solution
of (7), with maximal interval I and I ′ ⊂⊂ I, u ∈ L(N+2)/N−2

I′ L
2(N+2)/N−2
x , and

since 4
N−2 + 1 = N+2

N−2 , |u|4/N−2u ∈ L1
I′L

2
x. Thus, the conclusion of the Lemma

applies, provided the integration is restricted to
(
x1−at√

1−a2 , x
′, t−ax1√

1−a2

)
∈ RN × I ′.

Sketch of the proof of the Theorem. Assume first that T+(u0,c, u1,c) = 1. Assume,
to argue by contradiction, that (say)

∫
∂x1(u0,c)u1,c = γ > 0. Recall that, in this

situation, suppuc, ∂tuc ⊂ B(0, 1 − t), 0 < t < 1. For convenience, set u(x, t) =
uc(x, 1 + t), −1 < t < 0, which is supported in B(0, |t|). For 0 < a < 1/4, we
consider the Lorentz transformation

za(x1, x
′, t) = u

(
x1 − at√

1− a2
, x′,

t− ax1√
1− a2

)
,

and we fix our attention on −1/2 ≤ t < 0. In that region, the previous Lemma
and the comment following show, in conjunction with the support property of u,
that za is a solution in the energy space of (7). An easy calculation shows that
supp za( · , t) ⊂ B(0, |t|), so that 0 is the final time of existence for za. A lengthy
calculation shows that

lim
a↓0

E((za( · ,−1/2), ∂tza( · ,−1/2)))− E((u0,c, u1,c))
a

= −γ

and that, for some t0 ∈ [−1/2,−1/4],
∫
|∇za(t0)|2 <

∫
|∇W |2, for a small (by

integration in t0 and a change of variables, together with the variational estimates
for uc). But, since E((u0,c, u1,c)) = Ec, for a small this contradicts the definition
of Ec, since the final time of existence of za is finite.

In the case when T+(u0,c, u1,c) = +∞, λ(t) ≥ A0 > 0, the finiteness of the
energy of za is unclear, because of the lack of the support property. We instead
do a renormalization. We first rescale uc and consider, for R large, uR(x, t) =
RN−2/2uc(Rx,Rt), and for a small,

za,R(x1, x
′, t) = uR

(
x1 − at√

1− a2
, x′,

t− ax1√
1− a2

)
.

We assume, as before, that
∫
∂x1(u0,c)u1,c = γ > 0 and hope to obtain a contra-

diction. We prove, by integration in t0 ∈ (1, 2), that if h(t0) = θ(x)za,R(x1, x
′, t0),

with θ a fixed cut-off function, for some a1 small and R large, we have, for some
t0 ∈ (1, 2), that

E((h(t0), ∂th(t0))) < Ec −
1
2
γa1

and ∫
|∇h(t0)|2 <

∫
|∇W |2.
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We then let v be the solution of (7) with data h( · , t0). By the properties of Ec, we
know that ‖v‖S(−∞,+∞) ≤ g( 1

2γa1), for R large. But, since ‖uc‖S(0,+∞) = +∞,
we have that

‖uR‖L2(N+1)/N−2
[0,1] L

2(N+1)/N−2
{|x|<1}

−−−−→
R→∞

∞.

But, by finite speed of propagation, we have that v = za,R on a large set and, after
a change of variables to undo the Lorentz transformation, we reach a contradiction
from these two facts. �

From all this we see that, to prove Theorem 2, it suffices to show:

Step 3: Rigidity Theorem.

Theorem 9 (Rigidity). Assume that E((u0, u1)) < E((W, 0)),
∫
|∇u0|2 <

∫
|∇W |2.

Let u be the corresponding solution of (7), and let I+ = [0, T+((u0, u1))). Suppose
that:

a)
∫
∇u0u1 = 0.

b) There exist x(t), λ(t), t ∈ [0, T+((u0, u1))) such that

K =
{
v(x, t) =

(
1

λ(t)N−2/2uc

(
x−x(t)
λ(t) , t

)
, 1
λ(t)N/2

∂tuc

(
x−x(t)
λ(t) , t

))
: t ∈ I+

}
has compact closure in Ḣ1 × L2.

c) x(t), λ(t) are continuous, λ(t) > 0. If T+(u0, u1) < ∞, we have λ(t) ≥
C/(T+ − t), suppu, ∂tu ⊂ B(0, T+ − t), and if T+(u0, u1) = +∞, we have
x(0) = 0, λ(0) = 1, λ(t) ≥ A0 > 0.

Then T+(u0, u1) = +∞, u ≡ 0.

Clearly this Rigidity Theorem provides the contradiction that concludes the
proof of Theorem 2.

Proof of the Rigidity Theorem. For the proof we need some known identities (see
[42], [23]).

Lemma 6. Let

r(R) = r(t, R) =
∫
|x|≥R

{
|∇u|2 + |∂tu|2 + |u|2

∗
+
|u|2

|x|2

}
dx.

Let u be a solution of (7), t ∈ I, φR(x) = φ(x/R), ψR(x) = xφ(x/R), where φ is
in C∞0 (B2), φ ≡ 1 on |x| ≤ 1. Then:

i) ∂t

(∫
ψR∇u ∂tu

)
= −N

2

∫
(∂tu)2 +

N − 2
2

∫ [
|∇u|2 − |u|2

∗
]

+O(r(R)).
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ii) ∂t

(∫
φR∇u ∂tu

)
=
∫

(∂tu)2 −
∫
|∇u|2 +

∫
|u|2

∗
+O(r(R)).

iii) ∂t

(∫
ψR

{
1
2
|∇u|2 +

1
2

(∂tu)2 − 1
2∗
|u|2

∗
})

= −
∫
∇u ∂tu+O(r(R)).

We start out the proof of case 1, T+((u0, u1)) = +∞, by observing that, if
(u0, u1) 6= (0, 0) and E = E((u0, u1)), then, from our variational estimates, E > 0
and

sup
t>0
‖(∇u(t), ∂tu(t))‖Ḣ1×L2 ≤ CE.

We also have ∫
|∇u(t)|2 − |u(t)|2

∗
≥ C

∫
|∇u(t)|2, t > 0

and
1
2

∫
(∂tu(t))2 +

1
2

∫ [
|∇u(t)|2 − |u(t)|2

∗
]
≥ CE, t > 0.

The compactness of K and the fact that λ(t) ≥ A0 > 0 show that, given ε > 0,
we can find R0(ε) > 0 so that, for all t > 0, we have∫

|x+
x(t)
λ(t) |≥R(ε)

|∂tu|2 + |∇u|2 +
|u|2

|x|2
+ |u|2

∗
≤ εE.

The proof of this case is accomplished through two lemmas.

Lemma 7. There exist ε1 > 0, C > 0 such that, if 0 < ε < ε1, if R > 2R0(ε),
there exists t0 = t0(R, ε) with 0 < t0 ≤ CR, such that for 0 < t < t0, we have∣∣∣x(t)
λ(t)

∣∣∣ < R−R0(ε) and
∣∣∣x(t)
λ(t)

∣∣∣ = R−R0(ε).

Note that in the radial case, since we can take x(t) ≡ 0, a contradiction
follows directly from Lemma 7. This will be the analog of the local virial identity
proof for the corresponding case of (4). For the non-radial case we also need:

Lemma 8. There exist ε2 > 0, R1(ε) > 0, C0 > 0, so that if R > R1(ε), for
0 < ε < ε2, we have t0(R, ε) ≥ C0R/ε, where t0 is as in Lemma 7.

From Lemma 7 and Lemma 8 we have, for 0 < ε < ε1, R > 2R0(ε),
t0(R, ε) ≤ CR, while for 0 < ε < ε2, R > R1(ε), t0(R, ε) ≥ C0R/ε. This is
clearly a contradiction for ε small.

Proof of Lemma 7. Since x(0) = 0, λ(0) = 1; if not, we have for all 0 < t < CR,
with C large, that

∣∣∣x(t)
λ(t)

∣∣∣ < R−R0(ε). Let

zR(t) =
∫
ψR∇u ∂tu+

(
N

2
− 1

2

)∫
φRu ∂tu.
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Then
z′R(t) = −1

2

∫
(∂tu)2 − 1

2

∫ [
|∇u|2 − |u|2

∗
]

+O(r(R)).

But, for |x| > R, 0 < t < CR, we have
∣∣∣x+ x(t)

λ(t)

∣∣∣ ≥ R0(ε) so that |r(R)| ≤ C̃εE.

Thus, for ε small, z′R(t) ≤ − ˜̃CE/2. By our variational estimates, we also have

|zR(T )| ≤ C1RE. Integrating in t we obtain CR ˜̃CE/2 ≤ 2C1RE, which is a
contradiction for C large. �

Proof of Lemma 8. For 0 ≤ t ≤ t0, set

yR(t) =
∫
ψR

{
1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2

∗
}
.

For |x| > R,
∣∣∣x+ x(t)

λ(t)

∣∣∣ ≥ R0(ε), so that, since
∫
∇u0u1 = 0 =

∫
∇u(t) ∂tu(t),

y′(R) = O(r(R)), and hence |yR(t0)− yR(0)| ≤ C̃εEt0. However,

|yR(0)| ≤ C̃R0(ε)E +O(Rr(R0(ε))) ≤ C̃E[R0(ε) + εR].

Also,

|yR(t0)| ≥

∣∣∣∣∣
∫
∣∣∣x+

x(t0)
λ(t0)

∣∣∣≤R0(ε)

ψR

{
1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2

∗
}∣∣∣∣∣−

−

∣∣∣∣∣
∫
∣∣∣x+

x(t0)
λ(t0)

∣∣∣>R0(ε)

ψR

{
1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2

∗
}∣∣∣∣∣ .

In the first integral, |x| ≤ R, so that ψR(x) = x. The second integral is bounded
by MRεE. Thus,

|yR(t0)| ≥

∣∣∣∣∣
∫
∣∣∣x+

x(t0)
λ(t0)

∣∣∣≤R0(ε)

x

{
1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2

∗
}∣∣∣∣∣−MRεE.

The integral on the right equals

− x(t0)
λ(t0)

∫
∣∣∣x+

x(t0)
λ(t0)

∣∣∣≤R0(ε)

{
1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2

∗
}

+

+
∫
∣∣∣x+

x(t0)
λ(t0)

∣∣∣≤R0(ε)

(
x+

x(t0)
λ(t0)

){
1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2

∗
}
,

so that its absolute value is greater than or equal to

(R0 −R0(ε))E − C̃(R−R0(ε))εE − C̃R0(ε)E.
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Thus,

|yR(t0)| ≥ E(R−R0(ε))[1− C̃ε]− C̃R0(ε)E −MRεE ≥ ER/4,

for R large, ε small. But then ER/4− C̃E[R0(ε) + εR] ≤ C̃εEt0, which yields the
Lemma for ε small, R large. �

We next turn to the case 2, T+((u0, u1)) = 1, with suppu, ∂tu ⊂ B(0, 1− t),
λ(t) ≥ C/1 − t. For (7) we cannot use the conservation of the L2 norm as in the
(4) case and a new approach is needed. The first step is:

Lemma 9. Let u be as in the Rigidity Theorem, with T+((u0, u1)) = 1. Then there
exists C > 0 so that λ(t) ≤ C/1− t.

Proof. If not, we can find tn ↑ 1 so that λ(tn)(1− tn)→ +∞. Let

z(t) =
∫
x∇u ∂tu+

(
N

2
− 1

2

)∫
u ∂tu,

where we recall that z is well defined since suppu, ∂tu ⊂ B(0, 1 − t). Then, for
0 < t < 1, we have

z′(t) = −1
2

∫
(∂tu)2 − 1

2

∫
|∇u|2 − |u|2

∗
.

By our variational estimates, E((u0, u1)) = E > 0 and

sup
0<t<1

‖(u(t), ∂tu)‖Ḣ1×L2 ≤ CE

and z′(t) ≤ −CE, for 0 < t < 1. From the support properties of u, it is easy to
see that limt↑1 z(t) = 0, so that, integrating in t, we obtain

z(t) ≥ CE(1− t), 0 ≤ t < 1.

We will next show that z(tn)/(1− tn) −−−−→
n→∞

0, yielding a contradiction. Because∫
∇u(t) ∂tu(t) = 0, 0 < t < 1, we have

z(tn)
1− tn

=
∫

(x+ x(tn)/λ(tn))∇u ∂tu
1− tn

+
(
N

2
− 1

2

)∫
u ∂tu

1− tn
.

Note that, for ε > 0 given, we have∫
|x+

x(tn)
λ(tn) |≤ε(1−tn)

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ |∇u(tn)||∂tu(tn)|+ |u(tn)||∂tu(tn)| ≤ CεE(1− tn).

Next we will show that |x(tn)/λ(tn)| ≤ 2(1−tn). If not, B(−x(tn)/λ(tn), (1−
tn)) ∩B(0, (1− tn)) = ∅, so that∫

B(−x(tn)/λ(tn),(1−tn))

|∇u(tn)|2 + |∂tu(tn)|2 = 0,
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while∫
|x+

x(tn)
λ(tn) |≥(1−tn)

|∇u(tn)|2 + |∂tu(tn)|2 =
∫
|y|≥λ(tn)(1−tn)

∣∣∣∣∇u(y − x(tn)
λ(tn)

, tn

)∣∣∣∣2 +

+
∣∣∣∣∂tu(y − x(tn)

λ(tn)
, tn

)∣∣∣∣2 dy

λ(tn)N
−−−−→
n→∞

0,

which contradicts E > 0. Then

1
1− tn

∫
|x+

x(tn)
λ(tn) |≥ε(1−tn)

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ |∇u(tn)||∂tu(tn)| ≤

≤ 3
∫
|x+

x(tn)
λ(tn) |≥ε(1−tn)

|∇u(tn)||∂tu(tn)| =

= 3
∫
|y|≥ε(1−tn)λ(tn)

∣∣∣∣∇u(y − x(tn)
λ(tn)

, tn

)∣∣∣∣ ∣∣∣∣∂tu(y − x(tn)
λ(tn)

, tn

)∣∣∣∣ dy

λ(tn)N

−−−−→
n→∞

0

because of the compactness of K and the fact that λ(tn)(1 − tn) → ∞. Arguing
similarly for

∫
u ∂tu
1−tn , using Hardy’s inequality (centered at−x(tn)/λ(tn)), the proof

is concluded. �

Proposition 5. Let u be as in the Rigidity Theorem, with T+((u0, u1)) = 1, suppu,
∂tu ⊂ B(0, 1− t). Then

K =
(

(1− t)N−2/2u((1− t)x, t), (1− t)N−2/2 ∂tu((1− t)x, t)
)

is precompact in Ḣ1(RN )× L2(RN ).

Proof.{
~v(x, t) = (1− t)N2 (∇u((1− t)(x− x(t)), t), ∂tu((1− t)(x− x(t)), t)) , 0 ≤ t < 1

}
has compact closure in L2(RN )N+1, since we have c0 ≤ (1− t)λ(t) ≤ c1 and if K
is compact in L2(RN )N+1,

K1 =
{
λN/2~v(λx) : ~v ∈ K, c0 ≤ λ ≤ c1

}
also has K1 compact. Let now

ṽ(x, t) = (1− t)N/2 (∇u((1− t)x, t), ∂tu((1− t)x, t)) ,

so that ṽ(x, t) = ~v(x+x(t), t). Since supp~v( · , t) ⊂ {x : |x− x(t)| ≤ 1} and E > 0,
the fact that {~v( · , t)} is compact implies that |x(t)| ≤ M . But if K2 = {~v(x +
x0, t) : |x0| ≤M}, then K2 is compact, giving the Proposition. �
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At this point we introduce a new idea, inspired by the works of Giga–Kohn
[12] in the parabolic case and Merle–Zaag [36] in the hyperbolic case, who studied
the equations (∂2

t −4)u− |u|p−1u = 0, for 1 < p < 4
N−1 + 1, in the radial case. In

our case, p = 4
N−2 + 1 > 4

N−1 + 1. We thus introduce self-similar variables. Thus,
we set y = x/1− t, s = log 1/1− t and define

w(y, s; 0) = (1− t)N−2/2u(x, t) = e−s(N−2)/2u(e−sy, 1− e−s),

which is defined for 0 ≤ s < ∞ with suppw( · , s; 0) ⊂ {|y| ≤ 1}. We will also
consider, for δ > 0, uδ(x, t) = u(x, t+δ) which also solves (7) and its corresponding
w, which we will denote by w(y, s; δ). Thus, we set y = x/1+δ−t, s = log 1/1+δ−t
and

w(y, s; δ) = (1 + δ − t)N−2/2u(x, t) = e−s(N−2)/2u(e−sy, 1 + δ − e−s).

Here w(y, s; δ) is defined for 0 ≤ s < − log δ and we have

suppw( · , s; δ) ⊂
{
|y| ≤ e−s − δ

e−s
=

1− t
1 + δ − t

≤ 1− δ
}
.

The w solve, where they are defined, the equation

∂2
sw =

1
ρ

div (ρ∇w − ρ(y · ∇w)y)− N(N − 2)
4

w +

+ |w|4/N−2w − 2y · ∇∂sw − (N − 1)∂sw,

where ρ(y) = (1− |y|2)−1/2.
Note that the elliptic part of this operator degenerates. In fact,

1
ρ

div (ρ∇w − ρ(y · ∇w)y) =
1
ρ

div (ρ(I − y ⊗ y)∇w) ,

which is elliptic with smooth coefficients for |y| < 1, but degenerates at |y| = 1.
Here are some straightforward bounds on w( · ; δ) (δ > 0): w ∈ H1

0 (B1) with∫
B1

|∇w|2 + |∂sw|2 + |w|2
∗
≤ C.

Moreover, by Hardy’s inequality for H1
0 (B1) functions [6],∫

B1

|w(y)|2

(1− |y|2)2 ≤ C.

These bounds are uniform in δ > 0, 0 < s < − log δ. Next, following [36], we
introduce an energy, which will provide us with a Lyapunov functional for w.

Ẽ(w(s; δ)) =
∫
B1

1
2
{

(∂sw)2 + |∇w|2 − (y · ∇w)2
} dy

(1− |y|2)1/2
+

+
∫
B1

{
N(N − 2)

8
w2 − N − 2

2N
|w|2

∗
}

dy

(1− |y|2)1/2
.
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Note that this is finite for δ > 0. We have:

Lemma 10. For δ > 0, 0 < s1 < s2 < log 1/δ,

i) Ẽ(w(s2))− Ẽ(w(s1)) =
∫ s2

s1

∫
B1

(∂sw)2

(1− |y|2)3/2
ds dy, so that Ẽ is increasing.

ii)
1
2

∫
B1

[
(∂sw) · w − 1 +N

2
w2

]
dy

(1− |y|2)1/2

∣∣∣∣s2
s1

=

= −
∫ s2

s1

Ẽ(w(s))ds+
1
N

∫ s2

s1

∫
B1

|w|2∗

(1− |y|2)1/2
ds dy+

+
∫ s2

s1

∫
B1

{
(∂sw)2 + ∂swy · ∇w +

∂sww|y|2

1− |y|2

}
dy

(1− |y|2)1/2
.

iii) lim
s→log 1/δ

Ẽ(w(s)) = E((u0, u1)) = E, so that, by i), Ẽ(w(s)) ≤ E for 0 ≤

s < log 1/δ.

The proof is computational; see [23]. Our first improvement over this is:

Lemma 11.

∫ 1

0

∫
B1

(∂sw)2

1− |y|2
dy ds ≤ C log 1/δ.

Proof. Notice that

−2
∫

(∂sw)2

1− |y|2
=

d

ds

{∫ [
1
2

(∂sw)2 +
1
2
(
|∇w|2 − (y · ∇w)2

)
+

+
(N − 2)N

8
w2 − N − 2

2N
|w|2

∗
] [
− log(1− |y|2)

]
dy +

+
∫ [

log(1− |y|2) + 2
]
y · ∇w ∂sw − log(1− |y|2)(∂sw)2 −

− 2
∫

(∂sw)2.

We next integrate in s, between 0 and 1, and drop the next to last term by
sign. The proof is finished by using Cauchy–Schwartz and the support property of
w( · ; δ). �

Corollary 4. a)
∫ 1

0

∫
B1

|w|2∗

(1− |y|2)1/2
dy ds ≤ C(log 1/δ)1/2.

b) Ẽ(w(1)) ≥ −C(log 1/δ)1/2.
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Proof. Part a) follows from ii), iii) above, Cauchy–Schwartz and the previous
Lemma. Note that we obtain the power 1/2 on the right hand side by Cauchy–
Schwartz. Part b) follows from i) and the fact that∫ 1

0

Ẽ(w(s)) ds ≥ −C(log 1/δ)1/2,

which is a consequence of the definition of Ẽ and a). �

Our next improvement is:

Lemma 12.

∫ log 1/δ

1

∫
B1

(∂sw)2

(1− |y|2)3/2
≤ C(log 1/δ)1/2.

Proof. Use i), iii) and the bound b) in the Corollary. �

Corollary 5. There exists sδ ∈
(
1, (log 1/δ)3/4

)
such that∫ sδ+(log 1/δ)1/8

sδ

∫
B1

(∂sw)2

(1− |y|2)3/2
≤ C

(log 1/δ)1/8
.

Proof. Split
(
1, (log 1/δ)3/4

)
into disjoint intervals of length (log 1/δ)1/8. Their

number is (log 1/δ)5/8 and 5
8 −

1
8 = 1

2 . �

Note that, in the Corollary, the length of the s interval tends to infinity,
while the bound goes to zero. It is easy to see that if sδ ∈

(
1, (log 1/δ)3/4

)
, and

sδ = − log(1 + δ − tδ), then ∣∣∣∣ 1− tδ
1 + δ − tδ

− 1
∣∣∣∣ ≤ Cδ1/4,

which goes to 0 with δ. From this and the compactness of K, we can find δj → 0,
so that w(y, sδj + s; δj) converges, for s ∈ [0, S] to w∗(y, s) in C([0, S]; Ḣ1

0 × L2),
and w∗ solves our self-similar equation in B1×[0, S]. The previous Corollary shows
that w∗ must be independent of s. Also, the fact that E > 0 and our coercivity
estimates show that w∗ 6≡ 0. (See [23] for the details.) Thus, w∗ ∈ H1

0 (B1) solves
the (degenerate) elliptic equation

1
ρ

div (ρ∇w∗ − ρ(y · ∇w∗)y)− N(N − 2)
4

w∗ + |w∗|4/N−2w∗ = 0,

ρ(y) = (1− |y|2)−1/2.

We next point out that w∗ satisfies the additional (crucial) estimates:∫
B1

|w∗|2∗

(1− |y|2)1/2
+
∫
B1

[
|∇w∗|2 − (y · ∇w∗)2

]
(1− |y|2)1/2

<∞.
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Indeed, for the first estimate it suffices to show that, uniformly in j large, we have∫ sδj+δ

sδj

∫
B1

|w(y, s; δj)|2
∗

(1− |y|2)1/2
dy ds ≤ C,

which follows from ii) above, together with the choice of sδj , by the Corollary,
Cauchy–Schwartz and iii). The proof of the second estimate follows from the first
one, iii) and the formula for Ẽ.

The conclusion of the proof is obtained by showing that a w∗ in H1
0 (B1),

solving the degenerate elliptic equation with the additional bounds above, must
be zero. This will follow from a unique continuation argument. Recall that, for
|y| ≤ 1−η0, η0 > 0, the linear operator is uniformly eliptic, with smooth coefficients
and that the non-linearity is critical. An argument of Trudinger’s [51] shows that
w∗ is bounded on {|y| ≤ 1 − η0} for each η0 > 0. Thus, if we show that w∗ ≡ 0
near |y| = 1, the standard Carleman unique continuation principle [19] will show
that w∗ ≡ 0.

Near |y| = 1, our equation is modeled (in variables z ∈ RN−1, r ∈ R, r > 0,
near r = 0) by

r1/2∂r(r1/2∂rw
∗) +4zw∗ + cw∗ + |w∗|4/N−2w∗ = 0.

Our information on w∗ translates into w∗ ∈ H1
0 ((0, 1]× (|z| < 1)) and our crucial

additional estimates are:∫ 1

0

∫
|z|<1

|w∗(r, z)|2
∗ dr

r1/2
dz +

∫ 1

0

∫
|z|<1

|∇zw∗(r, z)|2
dr

r1/2
dz <∞.

To conclude, we take advantage of the degeneracy of the equation. We “desin-
gularize” the problem by letting r = a2, setting v(a, z) = w∗(a2, z), so that
∂av(a, z) = 2r1/2∂rw

∗(r, z). Our equation becomes:

∂2
av +4zv + cv + |v|4/N−2v = 0, 0 < a < 1, |z| < 1, v|a=0 = 0,

and our bounds give:∫ 1

0

∫
|z|<1

|∇zv(a, z)|2 da dz =
∫ 1

0

∫
|z|<1

|∇zw∗(r, z)|2
dr

r1/2
dz <∞,

∫ 1

0

∫
|z|<1

|∂av(a, z)|2 da
a
dz =

∫ 1

0

∫
|z|<1

|∂rw∗(r, z)|2 dr dz <∞.

Thus, v ∈ H1
0 ((0, 1]×B1), but in addition ∂av(a, z)|a=0 ≡ 0. We then extend v by

0 to a < 0 and see that the extension is an H1 solution to the same equation. By
Trudinger’s argument, it is bounded. But since it vanishes for a < 0, by Carleman’s
unique continuation theorem, v ≡ 0. Hence, w∗ ≡ 0, giving our contradiction. �
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[6] H. Brézis and M. Marcus. Hardy’s inequalities revisited. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4), 25(1-2):217–237 (1998), 1997. Dedicated to Ennio De
Giorgi.

[7] T. Cazenave and F. B. Weissler. The Cauchy problem for the critical nonlinear
Schrödinger equation in Hs. Nonlinear Anal., 14(10):807–836, 1990.

[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Global well-
posedness and scattering for the energy-critical nonlinear Schrödinger equa-
tion in R3. Annals of Math., to appear.
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