CHAPTER 4: TAUT FOLIATIONS

DANNY CALEGARI

ABSTRACT. These are notes on the theory of taut foliations on 3-manifolds, which are
being transformed into Chapter 4 of a book on 3-Manifolds. These notes follow a course
given at the University of Chicago in Spring 2016.
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1. FOLIATIONS

In this section we collect basic facts and definitions about foliations in general, special-
izing to some extent to codimension one foliations, but not yet on 3-manifolds.

1.1. The definition of a foliation. For any n and p < n we can fill up R™ with parallel
copies of R? (e.g. the subspaces for which the last n — p coordinates are constant). We call
this the product foliation of R™ by coordinate RP’s.

A codimension g foliation on an n-manifold is a structure locally modeled on the product
foliation of R™ by coordinate RP’s, where p = n — q. Formally, it is a decomposition of the
manifold into disjoint embedded p-submanifolds (called leaves) so that locally (i.e. when
restricted to sufficiently small open sets around any given point) the components of the
leaves partition the open set in the same way the product foliation of R™ is partitioned
into coordinate RP’s.

The issue of smoothness is important for foliations. We say a foliation is leafwise C" if
each leaf is a C" submanifold. Providing » > 1, the tangent spaces to the leaves give rise to
a p-dimensional subbundle T'F of T'M. We say a foliation is C" if F is leafwise C", and if
TT is a C" subbundle. We will occasionally consider foliations which are no more regular

Date: January 20, 2024.



2 DANNY CALEGARI

than C! or C° but we will typically insist that they are leafwise C* (this turns out not
to be a restriction in low dimensions).

Depending on the degree of smoothness, the data of a foliation may be given in several
ways, which we now discuss.

1.1.1. Involutive distributions.

Definition 1.1. A (smooth) p-dimensional subbundle £ of T'M is involutive (one also says
integrable) if T'(§) is a Lie algebra; i.e. if, whenever X, Y are vector fields tangent to &, so
is [X,Y].

Frobenius’ Theorem says that a bundle is involutive if and only if there is a smooth
p-dimensional submanifold passing through each point of M and everywhere tangent to &.
The (germ of such a) manifold is unique if £ is smooth, and the (maximal) submanifolds
passing through different points are disjoint or equal, and are precisely the leaves of a
foliation of M.

Thus a smooth subbundle & of T'M is equal to T'F for some smooth foliation F if and
only if it is involutive.

1.1.2. Differential ideals.

Definition 1.2. Let £ be a p-dimensional subbundle of TM. A form w annihilates £ if
w(Xi, -+, X,) =0 pointwise for all sections X; € I'(€).

The set of forms I(£) annihilating £ is an ideal in Q*(M); i.e. it is closed under wedge
product. Furthermore, an ideal in Q*(M) is of the form (&) for some £ as above if and
only if it is locally generated (as an ideal) by n — p independent 1-forms.

Anideal I in Q*(M) is said to be a differential ideal if it is closed under exterior derivative
d. There is a duality between differential ideals and Lie algebras; under this duality,
Frobenius Theorem becomes the proposition that an ideal (£) is a differential ideal if and
only if ¢ is involutive.

Ezxample 1.3 (Foliations from 1-forms). Let M be an n-manifold. Suppose on some open
U C M we have ¢ = n — p independent 1-forms wy,--- ,w,. Let £ be the kernel of the w;
(i.e. the p-dimensional subbundle of TU where all w; vanish). Then ¢ is involutive if and
only if there are 1-forms «;; so that

dwi = Zaij /\wj
J

for all 4.

If M is a 3-manifold, and ¢ is a 2-dimensional distribution, then ¢ = T'F for some F is
and only if locally £ = ker(w) for some nonzero 1-form w with dw = a A w. Equivalently,
wAdw = 0.

1.1.3. Charts. Another way to define the structure of a foliation is with charts and tran-
sition functions. On R"™ let = denote the first p coordinates, and y the last ¢ coordinates,
where p + ¢ = n. Then the data of a foliation on M is given by an open cover of M
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by charts U, and homeomorphisms ¢, : U, — R" so that on the overlaps the transition
functions ¢.5 := ppp, ! have the form

Pap (T, y) = (Pas(T, ), Pap(y))

In other words, the y coordinate of ¢,5(x,y) only depends on y, and not on z.

Transition functions of this form take leaves of the product foliation into other leaves.
Thus we can pull back leaves under the charts to define the leaves of a foliation on M.
Notice that this definition makes sense for foliations which are only C°.

FExample 1.4. The most basic examples of foliations are the product foliations of R™. More
generally, if M, N are manifolds of dimension p and ¢ respectively, then M x N has a p-
dimensional foliation by factors M x point and a g-dimensional foliation by factors point x
N.

Example 1.5. If J is a foliation of M, then the restriction of F to any open submanifold U
of M is also a foliation.

FExample 1.6. If M is any manifold, and X is a nonsingular vector field then T'X is evidently
involutive, and is equal to T'F for some 1-dimensional foliation F. The leaves of F are simply
the integral curves of the flow associated to X.

1.2. Transversals and Holonomy. Let J be a foliation of dimension p on an n-manifold
M. A transversal T is an (open) submanifold of dimension ¢ which intersects the leaves of
F transversely; i.e. in a local product chart in which the (components of the) leaves are
the submanifolds of R™ with last ¢ coordinates constant, 7 is the submanifold with first p
coordinates equal to zero.

If M is closed, we may find a finite set of transversals 7, - - - , 7, which together intersect
every leaf of F. Denote by 7 the union of the 7;.

Let v be a path contained in a leaf A\ of F which starts and ends on 7. We can cover
by (finitely many) product charts. At v(0) C 7 we can use the y coordinate of the chart as
a parameterization of the germ of 7 near v(0). When we move from one chart to the next,
the form of the transition function shows that there is a well-defined map on y-coordinates,
so we get the germ of a map between open subsets of R? associated to each transition. The
composition of the finitely many transitions as we move from (0) to (1) gives rise to a
well-defined germ of a map from 7 at v(0) to 7 at (1) which depends on the path ~ only
to the extent that it determines the sequence of charts. Thus this germ is unchanged if we
vary v by a small leafwise homotopy keeping endpoints fixed.

A different choice of charts will give rise to the same germ of a map from 7 to itself, since
transition functions are always cocycles. It follows that there is a well-defined homomor-
phism from the fundamental groupoid of homotopy classes of leafwise paths with endpoints
on 7 to the groupoid of germs of self-homeomorphisms of 7.

If we restrict to paths which start and end at a fixed p € A on a transversal 7, we get a
well-defined homomorphism from the fundamental group m (X, p) to the group of germs of
self-homeomorphisms of 7 fixing p.

Either of these homomorphisms is known as the holonomy of the foliation.

1.3. Foliated bundles. Closely related to the idea of holonomy are a class of foliations
that arise directly from representations via the Borel construction, which we now describe.
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Let M be a p-manifold, and F' a g-manifold, and suppose we have a representation
p:m (M) — Homeo(F'). We can build a foliated bundle E from p whose base space is M,
and whose fiber is F', as follows.

Let M denote the universal cover of M. The group m; (M) acts on the product M x F
by

a(r, f) = (a(z), p(a)(f))
where x — a(z) is the deck group action.

Define E := M x F/m(M). Projection to the first factor (“vertical” projection) defines
a map F — M whose fibers are copies of F'. In other words, E is an F-bundle over M.

The product M x F has a “horizontal” foliation F whose leaves are the products. M x
point. The action of 71 (M) on M x F permutes the leaves of F , so it descends to a foliation
J on the bundle E whose leaves are transverse to the fibers.

If i is a leaf of F, the vertical projection restricts to a covering map u — M. If i = Mxf
is a leaf of F covering p for some f € F, then ji — u is a (universal) covering map, and
m1(p) is isomorphic to the stabilizer of the leaf M x f, which is the stabilizer of f € F in
the representation p.

Ezxample 1.7 (Holonomy). Suppose p : w1 (M) — Homeo(R") fixes 0, and let £ be the foli-
ated R™ bundle over M associated to the Borel construction, with foliation &F. Associated
to 0 there is a leaf A of F which maps homeomorphically to M under the vertical projection.
Holonomy defines a homomorphism from 7 (A) to the group of germs of homeomorphisms
of R™ at 0. This representation is precisely the germ of p at 0 (after we identify 7 (\) with
m (M) by vertical projection).

Ezample 1.8 (Suspension). Let M be a manifold and let ¢ : M — M be a homeomorphism.
The product M x [0, 1] has a foliation by intervals m x [0, 1], and these glue together to make
up the leaves of the suspension foliation on the mapping torus M, := M x [0,1]/(m,1) ~
(¢¢(m),0).

We can think of M, as the foliated M bundle over S* associated to the representation
71(S') — Homeo(M) which takes the generator to ¢.

1.4. Smoothness and dynamics. The degree of smoothness of a foliation puts nontrivial
constraints on the dynamics of its holonomy. This is most acute in (co)-dimension one.
In this section we give three examples which are important in the theory of foliations
of 3-manifolds: Kopell’s Lemma, Sacksteder’s Theorem (as improved by Ghys), and the
Thurston Stability Theorem.

1.4.1. Kopell’s Lemma. Kopell’s Lemma [6] is the following:

Theorem 1.9 (Kopell’s Lemma). Let f, g be two commuting C? diffeomorphisms of [0, 1)
fixing 0.
If 0 is an isolated fixed point of f, then either it is an isolated fixed point of g or g = id.

I learned the following proof from Navas |7], Thm. 4.1.1.

Proof. Without loss of generality, assume f(z) < x for all x € (0,1).
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Suppose the theorem is false so that g fixes p € (0,1) and define p, := f"(p). By
assumption ¢ is nontrivial on each [p,, p,—1]. Since 0 is a non-isolated fixed point of g we
must have ¢’(0) = 1.

Let p; < u < v < p. Then by the chain rule and the triangle inequality

[log(f")"(v) — log(f")'(u)] < Z [log f'(f""}(v)) —log f'(f"~*(u))]

By hypothesis there is an ordering

) < ) < 772 u) < f7R) < <u <o
f”(S) f”(s)

7(s) i< [ 7(s)

for some constant C' independent of u, v, n. Here is where we use the hypothesis that f is
C?.
Now for any x € [py,p|, using the identity g(x) = f~"¢f"(x) and the chain rule, we

obtain
/ (/") (=) ' ") =) m
9'(@) = 9 ([ (@) = s s 9 (@)
() (frgfr(x)) (/") (g(x))
Taking ¢'(f"(x)) — 1 as n — oo we obtain |¢/(x)| < e from the previous estimate.
But now replacing g by g™ we get |(¢™)'(z)] < e with the same constant C' independent
of m. Now, if g is nontrivial on [p;, p] the powers of g have unbounded derivatives on this

interval, giving a contradiction and proving the theorem. 0

SO we estimate

[ og(F")'(v) — log( £ (u)| < /

frt(w)

v

ds=C

Assuming this theorem, we can give an example of a foliation which is C* but not C2.

Ezample 1.10 (Torus leaf). Let f, g be commuting homeomorphisms of [0, 1] fixing 0. Let 0
be an isolated fixed point of f, and suppose f(x) < x on (0,1). Now suppose fix(g) N (0, 1)
is the union of a countable discrete set of points p, where f(p,) = pni1. It is possible to
conjugate the action of f and g to make them C' on [0, 1], but by Kopell’s Lemma they
cannot be made C? near 0.

Associated to this action there is a foliated I bundle F over a torus 72 associated to
the representation 7 (T') — Homeo(I) given by identifying the generators of m(T) = Z?
with f and ¢g. The total space of the bundle is a product T2 x I. There is a torus leaf
corresponding to the global fixed point 0, and a cylinder leaf corresponding to the p,, and
this cylinder leaf spirals around the torus. All other leaves are planes which spiral around
this cylinder.

The foliation in this example has finite depth (in fact, depth 2). It has a pair of compact
leaves (the tori on the boundary) which are depth 0, then a noncompact leaf which is
proper in the complement of the depth 0 leaves (the cylinder) which is depth 1, then a
product family of noncompact leaves which are proper in the complement of the depth 0
and 1 leaves (the planes) which are depth 2.
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1.4.2. Sacksteder’s Theorem. A pseudogroup acting on a space X is a collection of home-
omorphisms between open subsets of X that may be composed and inverted on suitable
intersections of their domains and ranges in the obvious sense. If & is a foliation and 7 is a
transversal, holonomy between open subsets of 7 is a pseudogroup. Whether one wants to
describe holonomy in terms of pseudogroups or in terms of groupoids of germs is largely a
matter of taste.

Sacksteder’s theorem (Thm. 1 from [11]) concerns the holonomy pseudogroup associated
to a codimension 1 foliation of a compact manifold which is at least C2. It applies when
there is an exceptional minimal set; i.e. a closed nonempty union of leaves A in which every
leaf is dense, and for which the intersection with a transversal is a Cantor set. It is usually
stated in the language of pseudogroups.

Theorem 1.11 (Sacksteder). Let G be a finitely generated pseudogroup of C* diffeomor-
phisms of R leaving invariant a Cantor set K, every orbit of which is dense. Then there
is some g € G fizing v € K with ¢'(x) # 1.

Proof. For simplicity we prove the theorem assuming G is orientation-preserving. This
hypothesis may be easily removed; we leave details to the reader. Let S be a finite set of
generators for GG. By restricting domains if necessary we may assume there are constants
M, 0 so that M~ < |¢(z)] < M and |¢"(x)] < /M throughout the domain of any
g € S. Suppose we have some sequence g; € S (not necessarily distinct) and define
hp = gngn—1---g1. Suppose further that [u,v] is in the domain of h,,. Then by the chain
rule and the triangle inequality (as in the proof of Theorem 1.9) we have

()| < B () exp (03 [hs(w) = iy ()]
j<n

Let’s suppose K is contained in [0, 1] (with endpoints at 0 and 1 for simplicity), and
let’s let ¢ € K N (0,1) be the supremum of some bounded open interval .J, contained
in [0,1] — K. Choose an infinite sequence g; as above so that h;(q) # h;j(q) for i # j.
Let g; := hj(¢) be the uppermost point of a complementary interval .J;, and note that
> 1J;] < 1. Let’s further choose our sequence g; so that some subsequence of ¢, converges
to ¢. This is possible because every orbit is dense and because G is finitely generated (so
that we can pass to a diagonal subsequence). Again because of finite generation, there
are only finitely many intervals J; for which g; is not defined on all of J;; let’s throw out
this finite collection and relabel indices starting after the last one; note that we may still
assume some subsequence of g, converges to q. Thus Jj is in the domain of h,, for all n,
and therefore for each n there is some point in Jy for which !, < |J,|/|Jo|. Thus by the
estimate above, |h! (q)] < |J.|/|Jo|e? for all n.

Pick p € K with |p — ¢| = &, and define p,, := h,(k) and k, := |p, — ¢,|. Evidently

(1.1) kn < KN, (q) exp(@Z /@i) < K| Ju] /| Jo| exp<9(1 + Z /’iz)>
i<n i<n
providing [g, p] is in the domain of h,,.
We shall prove by induction that [g, p] is in the domain of h, and that x,, < C|J,| for
any fixed C providing « is chosen sufficiently small. By finite generation there is a positive
constant € so that if g; is any generator, and = € K is in the domain of g;, then any y € K
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with | — y| < € is also in the domain of g;. Thus to prove the induction hypothesis it will
suffice to prove the estimate on &, (taking C' small compared to €).

The induction hypothesis implies > . x; < C> ., [|J;| < C. Thus, assuming x <
C|Jo| and using Equation 1.1 we obtain x; < C|J;|exp(0(1 + C)) for all j < n and
therefore Z;:ll k; < Cexp(f(1+ C)). Substituting this in Equation 1.1 again gives the
estimate

Kn < K|Jn|/|Jo| exp (0(1 + C'ee(”c)))

so providing x < CJo| exp(—0(1 4+ Ce?3+))) the induction step is proved.

Now observe that for n big, hl, ~ |J,| < 1 for big n on all of [¢,p]. If we choose some
n for which ¢, is sufficiently close to ¢ then h,, will take some interval I about ¢ properly
inside itself; thus there will be a fixed point (necessarily in K) and at this fixed point
h!, < 1. O

The following observation is due to Ghys (see [3], Lem. 1.2.9 whose argument we repro-
duce essentially verbatim).

Lemma 1.12 (Ghys). Let G be a pseudogroup of homeomorphisms of R with dense orbits.
Then either G has trivial holonomy or there is a finitely generated subpseudogroup Go with
an exceptional minimal set.

Proof. Again, we assume G is orientation-preserving for simplicity. If there is non-trivial
holonomy then there is some interval I := [a,b] and some element f € G with f(a) = a
and f(x) < z for all a < = < b. Since orbits are dense there is g defined on some
smaller interval [a,d’] with a < g(a) < b. Choosing a' small enough we may further
assume a’ < g(a) < g(a’) < b. Replacing f by a power if necessary we may assume
a< f(b) <d <gla) <g(f(b)) <b. Let fi = f and fo = gf. Then both f; and f, take
I to disjoint intervals I; := f;(I) inside I, and therefore the semigroup S they generate
leaves invariant a Cantor set
E=() | w@

n wes, lwl=n

O

Combining Lemma 1.12 and Theorem 1.11 and restating in the language of foliations
gives:

Theorem 1.13 (Linear holonomy). Let F be a C? codimension 1 foliation of a compact
manifold M. Then

(1) every exceptional set has nontrivial linear holonomy; and
(2) if F is minimal, either F has no holonomy at all or F has nontrivial linear holonomy.

Codimension one foliations with no holonomy at all are very special, particularly in 3-
manifolds. We shall return to this subject in § 3.2. For now we restrict ourselves to the
following observation, due to Holder:

Proposition 1.14 (Holder). Suppose G is a nontrivial group of homeomorphisms of R
with no holonomy. Then G is (free) abelian, isomorphic to a subgroup of R, and the action
15 semi-conjugate to a group of translations.
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Proof. Since there is no holonomy, it follows that no nontrivial element of GG fixes any point
in R. It follows that for each nontrivial ¢ either g(z) > x for all z or g(x) < z for all .
This implies in particular for any nontrivial g and for any = > 0 that there is an integer n
(possibly negative) with ¢"(0) > z, or else g would fix sup,, ¢"(0) (this is one definition of
the so-called Archimedean property for G). Now, let g € G be arbitrary with g(0) > 0 and
then for any h € G observe that there is a Dedekind cut (L, Uy) consisting of all rational
numbers p/q for which ¢?(0) < h9(0) and for which ¢?(0) > h9(0) respectively. By the
Archimedean property one may verify the following facts:

(1) both L, and U, are nonempty;

(2) every element of Ly is less than every element of Uy;

(3) if p(h) € R is the real number associated to the Dedekind cut (Lj, Uy) then p is an
injective homomorphism.

Now let GO denote the orbit of 0. If GO is discrete it has no accumulation points, and
is order isomorphic to Z C R. In this case GG is isomorphic to Z and the action is semi-
conjugate to a group of (integer) translations. Otherwise G is isomorphic to a dense
subgroup p(G) of R. This group acts transitively and in an order preserving manner on
the orbit GO. Take the closure GO and collapse complementary gaps to points to obtain
a semi-conjugate action which by construction is topologically isomorphic to the action of
p(G) on R by translations. O

1.4.3. Thurston Stability Theorem. The Thurston’s Stability Theorem [15] applies in any
(co)-dimension. It is concerned with the kernel of the linear part of holonomy. Unlike the
theorems of Kopell and Sacksteder it applies when the action is only C*.

Theorem 1.15 (Thurston Stability Theorem). Let G be a finitely generated group of
germs of C diffeomorphisms of R™ fizing 0, and suppose that the derivative homomorphism
G — GL(n,R) at 0 is trivial.

Then for any sequence p; — 0 where the action is nontrivial there are a sequence of linear
rescalings of the action near p; which converge on compact subsets on some subsequence to
a nontrivial action of G on R™ by translations.

Proof. If g is a germ with trivial linear part, then we write g(x) = z+§(x) where §(z) = o(x)
and ¢'(x) = o(1).

Let g, h be two such germs, and let’s restrict attention to an open set U where |§'|, \B’ | <e.
Let p € U be a point where max(|§(p)|, |h(p)|) = 6 > 0 and such that the ball of radius ¢
about pisin U.

Then hg(p) = p+§(p) +h(p+j(p)). Since |I/| < € on the straight line from p to p+ §(p)
we have

Ih(p+ §(p)) — h(p)| < €|g(p)| < €d

So |hg(p) — (h(p) + G(p))| < € which is small compared to max(|g(p)|, |(p)|).

So let g1,---, g, be generators for G. If we let §; = max;(|g;(p;)|) then there is a
subsequence for which the vector {g;(p;)/d;} converges to a nontrivial vector {v;} with
ma; ([u5]) = 1.
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Fix a k. Then for any ¢, let U be the open set where |g7| < € for all j. If i is such that
the ball of radius kd; about p; is contained in U, then if
w = gilgs e gy

is a word in the generators of length < k (here each ¢, = +1) we have

| — Z agi,| < ek
]
which is small compared to ¢;, at least for fixed k, and for e small depending on k. It
follows that linear rescalings of the action of G at the p; by 1/4; converges on finite subsets
of G and compact subsets of R" to an action by translations, where g; converges to the
translation by v;. O

As a corollary we deduce that a group G acting as in the hypothesis of the theorem must

have Hom(G;R) # 0.

Ezample 1.16. Let A be a once-punctured torus. Then m(\) = F, generated by elements
a,b. Pick a complete hyperbolic structure on A, and let p : m(\) — Homeo(S') be the
induced action on the circle at infinity.

Since 71 () is free, we can lift p to a representation p : m1(A) — Homeo(R) in which both
a and b fix infinitely many points accumulating at the ends. Notice that the commutator
[a, b] acts freely on R.

Now identify R with (0, 1) and extend p trivially to the endpoints to get a representation
o : m(A) — Homeo(I), and let E be the associated foliated I bundle over A, and F the
foliation

Suppose o could be conjugated to be C*. Since the generators a, b have fixed points ac-
cumulating to 0 their derivatives must be equal to 1 there, so the linearization of the action
at 0 is trivial. But then the Thurston Stability Theorem would imply that linear rescalings
of the action at a sequence of points p; — 0 would converge to an action by translations.
In particular, one of a or b would move points near 0 “more” than the commutator [a, b],
contrary to the definition of o. This contradiction shows that o cannot be made C!, and
therefore neither can J.

1.5. Codimension one. There are a number of special features of codimension 1 foliations
that will be very important in what follows.

Proposition 1.17 (Nonclosed leaf, closed transversal). Let F be a codimension 1 foliation
of a closed manifold M, and let X\ be a leaf which is not closed. Then there is a closed
transversal v which intersects .

Proof. Notice that in a closed manifold a leaf is nonclosed if and only if it is noncom-
pact. But then there is some product chart to which the leaf recurs infinitely often, and
consequently it accumulates somewhere.
It follows that there is some transverse interval I which starts and ends on A\ and has
a consistent co-orientation at both endpoints. Join the endpoints of I by a path J in A.
The union is a closed loop. By the co-orientation condition, we can perturb this loop to
be transverse to F and still to intersect A. See Figure 1.
OJ
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FIGURE 1. A nonclosed leaf admits a transversal

The next Theorem is due to Novikov [8], and is a cornerstone of the codimension 1
theory.

Theorem 1.18 (Novikov, Closed leaves are closed). Let F be a codimension 1 foliation of
a closed manifold M. Then the union of the closed leaves of F is closed.

Proof. After passing to a finite cover we can assume JF is oriented and co-oriented. Taking
finite covers preserves the property of being closed, so it suffices to prove the theorem in
the cover.

Since M is closed, H,_;(M) is finite-dimensional, and therefore so is the subspace of
H, _1(M) generated by closed leaves. So there are finitely many closed leaves Ay, -+, A\,
so that any other closed leaf is homologous to a linear combination of the ;.

Let pu; be a sequence of closed leaves which have p in their limit, and suppose pu is not
closed. Then certainly p is disjoint from the \;, and by Proposition 1.17 we can find a
closed transversal v which intersects p and does not intersect any A; (just look at a chart
in which p accumulates and construct I as in the proposition disjoint from the intersection
of the chart with the );). But then v intersects p; transversely for big enough j, and
since J is co-oriented, this intersection is homologically essential. Thus, [;] is nontrivial
in H,_1(M), but is not in the span of the [\;], which is a contradiction. O

Codimension 1 is essential for this theorem, as the following example shows.

FExample 1.19. Let ¢ : D — D take the unit disk to itself by rotating the circle at radius
r by 27r. The suspension of ¢ gives a codimension 2 foliation of a closed solid torus. The
closed leaves are the suspensions of the circles at rational radius. Thus the closed leaves
are dense but not closed.

Lemma 1.20. Let J be a codimension 1 foliation of a closed manifold M. Suppose that F
15 co-oriented. Let X be a closed leaf which is a limit of closed leaves ;. Then the \; are
homeomorphic to \.

Proof. Foliate a product neighborhood U of A by transversals, and choose a basepoint p € A
on a transversal 7. Because A is closed, there is a compact family of paths I" in A starting at
p and ending at every other point in A. For example, we can choose a Riemannian metric
on A, and let I' consist of the paths with length equal to at most half the injectivity radius.
Consequently there is a transversal ¢ contained in 7 so that holonomy transport along any
path in I' is defined on all of o, and takes it into a transversal in the given product.

For large enough j we must have \; N ¢ nonempty. Let ¢ be such a point. For each
r € X intersecting the transversal 7(r) there is a path v(r) in I" from p to r and holonomy
transport takes ¢ to ¢(r) € 7(r). For points r with more than two paths v(r),~7'(r) in I'
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(e.g. for r on the cut locus of p for the choice of I" given above) we might a priori have two
q(r),q' (r) € 7(r). In fact we claim ¢(r) = ¢/(r).

For, otherwise, ¢'(r) < q(r) (say), so holonomy around the loop 3 :=+/(r) o y(r)~! con-
tracts the interval [r, ¢(r)] to [r, ¢ (r)] by a homeomorphism h. But then ¢(r) > h(q(r)) >
h*(q(r)) > h*(q(r)) > --- and so on, so that \; contains infinitely many points on 7(r),
contrary to the fact that \; is closed. This proves the claim.

Thus the function r — ¢(r) defines a bijection from A to A;, whose inverse is given

by projection along the transversals, which gives the desired homeomorphism from A; to
A OJ

If F is not co-oriented, then a one-sided closed leaf A might be a limit of closed leaves
A; that double cover it.

Theorem 1.21 (Reeb stability). Let F be a codimension 1 foliation of a closed connected

manifold M. Suppose some closed leaf \ has m finite. Then M is finitely covered by a \
bundle over S foliated by fibers.

Proof. Pass to a finite cover where m(\) = 1 and F is co-oriented. Since A is simply-
connected, holonomy transport is trivial where defined. Since it is closed, we can foliate
some neighborhood as a product. Thus the set of leaves homeomorphic to A is nonempty
and open.

But by Theorem 1.18 and Lemma 1.20 the set of leaves homeomorphic to A is also closed,
so it is all of M, and we see that the structure is locally that of a product, and globally
that of a bundle. O

In particular, if M is a closed 3-manifold, and F is a 2-dimensional foliation with an S?
leaf, then M is finitely covered by S? x S! and F is covered by the product foliation by
spheres.

2. REEB COMPONENTS AND NOVIKOV’S THEOREM

From now on we focus exclusively on cooriented codimension one foliations of oriented
3-manifolds, unless we explicitly say to the contrary. Furthermore, we assume that our
foliations have no spherical leaves, since the Reeb Stability Theorem 1.21 says that the
only (coorientable) foliation with a spherical leaf is the product foliation of S? x S*.

Having ruled out spherical leaves, we next consider toral ones.

2.1. Reeb components. Let R? denote the closed upper half-space in R?; i.e. the subset

where z > 0. Let R? — 0 denote the complement of the origin in R?. Let T be the foliation
of R3 — 0 by horizontal leaves z = constant. Note that the leaves with z > 0 are all planes,
but z = 0 is a punctured plane.

The diffeomorphism ¢ : (z,y, z) — (2z, 2y, 22) takes RY — 0 to itself and permutes the
leaves of F. Therefore it descends to a foliation F of the quotient (R3 — 0)/(¢) which is
homeomorphic to a solid torus D? x S*.

The foliation F has one torus leaf which is the boundary S* x S*, and is covered by the
leaf z = 0 of F. All other leaves are planes, whose end winds around the torus leaf, like
infinitely deep “socks” with their toes stuffed into their mouths.
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Definition 2.1. The foliation F of the solid torus is called the Reeb foliation. A solid
torus in a foliated 3-manifold with such a foliation is called a Reeb component.
A foliation of a 3-manifold is Reebless if it has no Reeb component.

Example 2.2. Any Lens space (for instance, S®) admits a foliation obtained by gluing two
Reeb components along their boundaries.

Note that we can define “Reeb components” of S x D"~! for any n by replacing 3 by n in
the construction above. To distinguish these we call these n-dimensional Reeb components.

2.2. Turbularization. Reeb components can be “inserted” into foliations along transverse
loops. Suppose J is a foliation of M and + is an embedded loop transverse to F. Remove
a solid torus neighborhood N () from F. Then M — N () has boundary a torus 7', and we
look at a product collar T x [0, 1], where T'x 0 = (M — N(v)) and if we write T' = S* x S1
then the leaves of F are transverse to the S* x point factors (we call this first S! factor
“vertical”; it is the direction of the loop 7).

For each n we let ¢, be a diffeomorphism of T" x [0,27"] which is the identity on the
boundary and which takes the horizontal point x point x [0,27"] factors and drags them
around the vertical S* factor. This “spins” the leaves of F once around the vertical direction.
The composition ¢ := [ [~ ¢n is smooth in the interior, and the leaves of p(F) accumulate
on the boundary T?. We can therefore define a new foliation F’ of M which agrees with
©(F) on M — N(v), and which has a Reeb component on N (7).

We say that ¢(F) on M — N(7) is obtained from F on M — N(v) by spinning leaves
along the boundary, and call ¥ the result of turbularization of F along ~.

Note that T'F and T'F are homotopic as plane fields.

2.3. Constructing foliations. So far we have not given many examples of 3-manifolds
with foliations. The following construction is due to Thurston.

Theorem 2.3 (Constructing foliations). For any 3-manifold, every homotopy class of 2-
plane field is homotopic to TTF for some foliation F.

Proof. On a small enough scale the 2-plane field is “almost” constant, and looks like the
horizontal distribution on R3. Choose a fine triangulation whose simplices are very close to
linear on this small scale, and whose 1-skeleton is transverse to the 2-plane field. Locally,
where the 2-plane field can be co-oriented, each simplex inherits a total order on its vertices,
and its edges can be oriented so that each edge points to the higher of its two terminal
vertices.

After barycentric subdivision if necessary, the simplices can be 2-colored black and white
so that adjacent simplices have different colors. Each simplex has a highest and a lowest
vertex; the boundary is a sphere, and we give each sphere a (singular) foliation which spirals
from the lowest to the highest vertex, where the spiraling is clockwise on the white simplices
and anticlockwise on the black simplices. Tilting the foliation in the anticlockwise direction
on a face of a black simplex tilts it in the clockwise direction as seen from an adjacent white
simplex; these deformations therefore interfere “constructively”, and the desired foliation
can be achieved. Then extend the resulting foliation to an open neighborhood N of the
2-skeleton.
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The interior of each simplex is a ball; the foliation on the boundary of each simplex
typically cannot be extended to the interior, because of the spiraling.

However we claim that there is a positively oriented transversal in N from any point to
any other point; to see this, observe that in the boundary of a simplex ¢ where the foliation
spirals from bottom to top, a transverse path that spirals in the opposite direction can move
(almost) from top to bottom. By moving from simplex to adjacent simplex, we can move
anywhere in the manifold. This proves the claim.

For each simplex ¢ by this claim we can drill out a positively oriented transverse path
7 from the top of o to the bottom. Then a neighborhood of 7 together with the interior
of o is a solid torus. We can spin the foliation around the boundary torus, and then fill it
in with a Reeb component. Doing this for each simplex produces a foliation in the desired
homotopy class. 0

2.4. Novikov’s Theorem.

Theorem 2.4 (Novikov Reebless). Let M be a 3-manifold and let F be a Reebless foliation.
Then

(1) every leaf \ is m -injective; and
(2) every transverse loop 7 is essential in my.

Proof. Suppose not, so that there is some homotopically trivial loop v which is either
transverse or tangent to . Let D be a disk that v bounds. Put D in general position
relative to J.

Thus D inherits a singular foliation. Because 0D is either transverse or tangent to &,
and because x(D) = 1 it follows that there is a point p € D which looks like a local mini-
mum /maximum singularity with respect to F. Thus there is a maximal open neighborhood
U of p foliated by concentric circles S; for ¢ € (0,1) where S; bounds a disk F; in its leaf
A for t € (0,1). Let Sy be the limit of the S;. By hypothesis, S; is a (possibly singular)
circle in some leaf \;.

If S; bounds a disk F which is a limit of the E; then the holonomy around S is trivial,
so either we can extend U (contrary to maximality) or there is a singularity on S;. In
the latter case we can push U into F; and cancel a pair of singularities, reducing the
complexity.

If not, then the E; do not converge on compact subsets. This is only possible if their
areas increase without bound. We must show in this case that there is a Reeb component.

First observe that by cut-and-paste we can restrict to the case that each E; is embedded;
for, leafwise we can reduce the number of self-intersections of S; by a homotopy, and these
homotopies can be performed in a family unless some innermost family of embedded disks
has unbounded area.

For small ¢ the union B; := UscpyFs is a closed ball bounded by E; U Ulgy. As
we increase t this ball expands. Since the areas of the E,; increase without limit, the
volume swept out by this family must increase without limit also, and since M is compact,
eventually B; must intersect itself. This can only be because some FE; becomes tangent
to Uljo4, and this can only be at the center point p, because this is the only place where
U is tangent to F. Thereafter B; is an expanding family of solid tori which can never
develop any more self-tangencies. But this means that the volume and diameter of this
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solid torus are a priori bounded (by that of M) and they must limit to a solid torus which
by construction is foliated as a Reeb component.

So if F is Reebless, we may inductively cancel all the singularities and push D into a
leaf of A\ (showing that a homotopically trivial tangential loop = is inessential in its leaf) or
arrive at a contradiction (showing that a transverse loop ~y is homotopically essential after
all). O

Corollary 2.5. Let M be a 3-manifold and let F be Reebless without spherical leaves.
Then if F denotes the foliation of the universal cover M, leaves of F are properly embedded
planes, and M 1is irreducible.

Proof. If some leaf A of F is not proper, it accumulates somewhere, and we can build a
transverse loop v to F which projects to an inessential transverse loop in M, contrary to
Theorem 2.4. 3

Again, by Theorem 2.4, leaves of F are simply-connected, so (since F has no spherical
leaves) they are all planes.

Alexander’s proof of the irreducibility of R depends only on the fact that it has a foliation
by (proper) planes. The same argument shows that M is irreducible, and therefore so is
M. O

3. TAUT FOLIATIONS

In this section we introduce the class of taut foliations. These are the foliations which
see and certify the most interesting geometric and topological properties of their ambient
manifold, and are the focus of the remainder of these notes.

For the sake of simplicity we’re going to assume (for now) that our foliations are smooth.
In fact, this is a substantial simplification, unwarranted in many important situations.
Fortunately, there is a version of the theory that makes sense with no assumptions of
regularity, and for which all the most important theorems and appliations still go through;
we defer the discussion of this to § 77.

3.1. Equivalent formulations of tautness. If F is a codimension 1 foliation of a 3-
manifold M, after passing to a cover of degree at most 4 we may assume that M is
oriented, and that F is oriented and co-oriented. This means that there are orientations
on the tangent bundle T'F and the normal bundle vF of F respectively which together give
an orientation on T'F @ vF = T'M agreeing with the given orientation on M.

Theorem 3.1 (Equivalent Formulations of Tautness). For a smooth, oriented, co-oriented
codimension 1 foliation F of a connected closed 3-manifold M the following conditions are
equivalent:

(1) For every point p € M there is an immersed circle 7y, : S* — M transverse to F
and passing through p.

(2) There is an immersed circle v : S* — M transverse to F and intersecting every leaf
of F.

(8) There is no proper compact submanifold N of M whose boundary is tangent to F,
and for which the co-orientation points in to N along ON .

(4) There is a closed 2-form w on M?® positive on TF.
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(5) There is a flow X transverse to F which is volume preserving for some Riemannian
metric on M.

(6) There is a Riemannian metric on M for which every leaf of F is a minimal surface.

(7) There is a Riemannian metric on M and a closed 2-form w which calibrates F.

(8) There is a map f : M — S* whose restriction to each leaf \ is a branched covering
f:A— 5%

(9) For any Riemannian metric on M, there is a map f: M — CP" for somen > 1
which is leafwise holomorphic (in the induced conformal structure).

(10) For any Riemannian metric on M, there is a symplectic W*,w and almost-complex

structure J and a map f: M — W which is leafwise (pseudo)-holomorphic.

An F satisfying any of these equivalent conditions is said to be taut.

If F is orientable and coorientable and contains a spherical leaf (i.e. a leaf homeomorphic
to RP? or S?), then the Reeb Stability Theorem 1.21 says that JF is the product foliation of
52 x S by spheres. This foliation evidently satisfies all the proposed definitions of tautness,
so for the remainder of this section we’ll assume without explicitly saying so that F has no
spherical leaves.

We prove Theorem 3.1 in a series of steps; the equivalence of the last condition with the
others will be deferred until Chapter 5.

3.1.1. Transversals. An immersed circle v : S* — M transverse to J is called a transverse
loop, or a transversal. Transversals can be made embedded by a small leafwise homotopy.

Corollary 3.2. Being taut is inherited under passing to finite covers.
Proof. A connected preimage of a closed transversal is a closed transversal. U

If a transversal passes through a given point p on a leaf A, it’s useful to be able to modify
it by leafwise homotopy so that it passes through another given point ¢ on A. This can be
arranged:

Lemma 3.3 (Move transversal). Suppose vy : St — M is transverse to F. Suppose v(0) = p
contained in a leaf A of F, and let q be any other point on A. Then we may homotop =,
through maps transverse to F, to a new map with v(0) = q.

Proof. Let a be an embedded path in A from p to ¢q. A sufficiently small neighborhood
U of « is foliated as a product in such a way that the image of v intersects U in a single
vertical segment. We may interpret this segment as the graph of a (constant) map from
[—1,1] to A starting and ending at p. This map is homotopic to o concatenated with a™!;

the graph of this homotopy gives the desired modification of . See Figure 2.

FIGURE 2. Leafwise homotop v so it passes through ¢
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Corollary 3.4. A foliation without closed leaves is taut.

Proof. By Proposition 1.17 every nonclosed leaf admits a transversal, and by Lemma 3.3
we can find a transversal passing through any given point on such a leaf. 0

Claim. (1) and (2) are equivalent.

Proof. Suppose v : S — M is transverse to F. Let U(~) be the union of the leaves of F
that v intersects. Evidently U(y) is open. Furthermore, by Lemma 3.3, for any p € U(y)
we may modify 7 by a leafwise homotopy to some new § so that U(y) = U(J) and § passes
through p. This shows that (2) implies (1).

To see that (1) implies (2), hypothesis (1) says that for every p € M there’s v with p in
(the image of) ~y, and this means p € U(y). Since M is compact, there’s a smallest (finite)
collection of ~; for which the union of the U(v;) is equal to M.

We claim that the U(y;) are disjoint. Otherwise there would be i and j with p €
U(y;) NU(7;). By Lemma 3.3 we could modify 7; and -, by a leafwise homotopy so they
both pass through p. Then we could build a new transversal v by starting at p, first going
around +;, and then going around ~;. This would satisty U(y) = U(v;) U U(v;), which
contradicts our choice of transversals to be as few as possible.

So: the U(~;) are disjoint and open. Since M is connected, there can be only one
transversal in the collection. 0

3.1.2. Dead ends. A compact submanifiold N of M whose boundary is tangent to F and
for which the co-orientation points inwards along ON is called a dead end. Formulation (3)
says that tautness is equivalent to having no dead ends.

Lemma 3.5 (Boundary tori). Let N be a dead end component. Then ON is a union of
tori.

Proof. We show x(ON) = 0. Since ON has no spheres (by fiat) it follows that all the
components will be tori.

The coorientation on F lets us find a nonsingular vector field X everywhere transverse
to F and pointing inwards along ON. Let Y be a generic vector field tangent to 0N and
extend it as a product on a collar of N. Then let Z be equal to X away from this collar,
and on the collar equal to a convex combination of X and Y, limiting to Y on ON. We
double Z to get a vector field on DN singular only at the singular points of Y, and whose
singularities have the same index on DN as on ON. Thus x(DN) = x(ON) = 0. O

Claim. (1) and (3) are equivalent.

Proof. A transversal which enters a dead end component can never leave, so any foliation
with a dead end does not satisfy (1).

Conversely, suppose F does not satisfy (1), and let A be a (necessarily compact) leaf
which does not intersect a closed transversal.

Let N be the subset of M consisting of points which can be reached by a positively
oriented transversal starting at A. Transversals can always be extended, so N is open
and a union of leaves. Thus its closure N is compact and has boundary a union of leaves.
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Moreover the coorientation points inwards all along N, since otherwise a positively oriented
transversal from a point near 9N could be extended all the way to N.
By construction NV is a dead end (with A as a leaf). O

Taut foliations are therefore Reebless, but the converse is false.

Ezample 3.6. A pair of (oppositely aligned) 2-dimensional Reeb components foliates a torus
(with 1-dimensional leaves). Taking the product with S* produces a foliation of a 3-torus
which is Reebless but not taut. There are two dead end components, each equal to the
product of a 2-dimensional Reeb component with a circle, and homeomorphic to a torus
times interval.

Corollary 3.7. If M is hyperbolic, F is Reebless if and only if it is taut.

Proof. If F is Reebless, every leaf is essential, by Novikov’s Theorem 2.4. So if M admits
a foliation which is Reebless but not taut, then M is toroidal. O

3.1.3. Forms and flows. We have proved the equivalence of formulations (1)—(3). We now
prove the equivalence of formulations (4)—(7) with themselves and with (1)—(3).

Since we're assuming throughout this section that our foliations J are smooth and co-
oriented, we can find some nowhere zero 1-form « so that TF = ker a.

Claim. (1) implies (4).

Proof. For every point p € M there’s a transversal v : S* — M through p. By a homotopy
we may assume 7 is smooth and embedded. Thus, an open neighborhood of v(S!) is an
open solid torus N whose induced foliation is a product D? x S!. Since M is compact,
finitely many N; cover M.

Let 0 be a positive 2-form on D? that is nowhere zero, and tapers smoothly to zero at
the boundary. Each solid torus N; projects to the D? factor, and we can pull back 6 to a
closed 2-form w; on N;, and then extend it to zero outside N;. Let w = >, w;. Then w is
closed and positive on T'F. O

Claim. (4) implies (5).

Proof. If w and a are as above, then w A « is a nowhere vanishing 3-form on M; i.e. a
volume form. Since w is nondegenerate, ker(w) is 1-dimensional everywhere, and transverse
to ker(ar) = TF. Thus there is a nowhere zero vector field X, transverse to F, satisfying
txw =0 and a(X) =1 everywhere. We may give M a Riemannian metric in which X has
length 1 and is perpendicular to F, and in which w restricts to the area form on T'F. For
such a Riemannian metric, the volume form is w A a.

But then Cartan’s formula gives

LxwNha=dix(wAha)=dvw=0
so that X generates a volume-preserving flow transverse to J. 0
Claim. (5) implies (3).

Proof. If there is a volume preserving transverse flow, there can be no dead end, since any
transverse flow would take a dead end properly inside itself, thereby compressing it. O
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A closed 2-form w on a Riemannian 3-manifold M calibrates a surface S if w(§) < area(§)
for every 2-plane ¢, and if w(&) = area(§) for (oriented) 2-planes ¢ tangent to &F.

Claim. (4) implies (7).

Proof. In the Riemannian metric for which w A « is a volume form and X is perpendicular
to T'F, the form w is calibrating for J. U

A surface S in a 3-manifold M is said to be least area in its homology class if for any
compact subsurface D C S and any other D' C M with 0D’ = 9D and D’ homologous to
D rel. boundary, we have

area(D") > area(D)
If S is compact we allow D = S here.

A surface which is least area in its homology class is certainly least area in its isotopy

class, and in particular it is a stable minimal surface.

Lemma 3.8 (Calibrated is least area). Suppose w calibrates S. Then S is least area in its
homology class.

Proof. Let D C S be compact and D' C M have 0D = 0D’ and D’ homologous to D rel.
boundary. Then

area(D') > / w= /D w = area(D)

Claim. (7) implies (6).
Proof. This is an immediate corollary of Lemma 3.8. 0
Claim. (6) implies (5).

Proof. Let M be a Riemannian manifold for which the leaves of F are minimal surfaces.
Let X be an orthogonal vector field of constant length 1. Let ¢; be the flow generated by
X. Since X is perpendicular to T'F, the tangent field ¢* ,TF stays perpendicular to X to
first order in ¢. It follows that the first variation of the volume is equal to the first variation
of the area of leaves under the flow. But this first variation of area under orthogonal flow
is (by definition) the mean curvature, and a surface is minimal if and only if its mean
curvature vanishes identically. O

This proves the equivalence of conditions (1)—(7) in Theorem 3.1.

3.2. Invariant transverse measures. Let JF be a foliation. A invariant transverse mea-
sure p is a measure on the local leaf space in each chart which is preserved by transition
functions.

Said another way, it assigns a non-negative number p(7) to each transversal, which is
(countably) additive, and so that if 7/ can be obtained from 7 by a leafwise homotopy, then
pu(t') = (7).

Let o be a (nontrivial) transverse measure. Let 7 be a total transversal; i.e. T consists of
a finite union of intervals 7 U- - - U ;. Then p gives rise to a measure on 7, and holonomy
transport preserves this measure.
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If F is codimension 1 and coorientable, each 7; is an interval. Integrating u along 7;
(in the positive direction) gives rise to a monotone map from 7; to an interval o; with
length(o;) = p(7;). This map might not be continuous (if x4 has atoms) but the holonomy
action on 7 induces an action on ¢ := U;o; by (germs of) translations, and the action
of holonomy transport on ¢ completely encodes the action of holonomy transport on the
leaves of &F in the support of .

If M is compact, the groupoid is compactly generated by leafwise paths of uniformly
bounded length; we could equally well talk about a finitely generated pseudogroup of par-
tially defined translations of o.

Here is another way to think about this pseudogroup. Since JF is coorientable, we can
extend p to a signed measure on oriented transversals, where changing the orientation of
a transversal gives the negative of the measure.

A generic smooth path v in M can be decomposed into a finite union of positive and
negative transversals, and we can define u(7y) by additivity. A generic smooth homotopy
of v rel. endpoints creates or destroys transversal segments in (leafwise homotopic) pairs
with opposite orientations, so g is invariant under such homotopies. Thus we obtain a
homomorphism

pu:m (M) =R

Let A be a leaf in the support of p. Suppose A is not compact, so that u has no atoms
on A\. We can consider the returns of A to a product chart U. Locally the leaf space is
parameterized by a transversal 7, and we can fix a point p € AN 7. A leafwise path v C A
from p to ¢ € 7 can be closed up with the oriented interval [¢, p] C 7 to make a closed loop
7', and pu([g, p]) = pu(7'). Since A is in the support of y, the point ¢ is determined by p
and the (signed) value of u([g,p]). Thus the number of points of AN 7 in the ball of radius
R in A about p is bounded by the number of values of p, on the set of loops in m (M)
with representatives of length at most R + length(7). Since R is abelian, the latter grows
polynomially with degree at most by (M).

We deduce the following theorem of Plante [10]:

Theorem 3.9 (Plante polynomial growth). Let F be a codimension 1 foliation of M. If A

s a leaf in the support of an invariant transverse measure j then X\ has polynomaial growth
of degree < by (M).

In fact, there is a (partial) converse to this theorem, coming from the amenability of
pseudogroups of subexponential growth.

Proposition 3.10 (subexponential growth). Let F be a foliation of a compact manifold
M, and let X be a leaf with subexponential growth. Then there is a nontrivial invariant
measure on F with support contained in the closure of .

Proof. Let \; be a sequence of Falner subsets of A; i.e. subsurfaces such that
volume(0\;) /volume(A;) — 0

The boundaries O\; might a priori be very wiggly; if so, since M is compact (and therefore
leaves of F have bounded geometry), we may adjust the d\; in A to smooth hypersurfaces
with bounded geometry and no greater volume, at the cost of adjusting volume()\;) by a
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term comparable to volume(0)\;); thus we may assume the d\; have bounded geometry.
For each transversal 7 we can define

wi (1) = #(1 N A;) /volume(\;)

If 7 and 7" are obtained by leafwise homotopy of bounded length, the homotopy can be
perturbed to intersect d\; a bounded number of times (independent of i), and the Fglner
condition then guarantees |u;(7') — p;(7)| — 0. No transversal 7 can intersect any \; in
more than C'(7)volume();) points, and since M is compact, a total transversal will intersect
A; for big i in € - volume()\;) points.

Thus some subsequence of the measures p; converges to a nontrivial invariant transverse
measure, whose support is contained in the closure of \. O

FExample 3.11. The planar leaves of a Reeb component have linear growth. The construc-
tion from Proposition 3.10 gives rise to an (atomic) invariant measure supported on the
boundary torus.

When ¥ is coorientable, we can think of the weighted subsets A;/volume();) as (singu-
lar) p-chains (if p is the dimension of the leaves), and their limit as a de Rham p-cycle
representing a p-dimensional homology class [u]. When F has codimension one, [u] is
(Poincaré) dual to a class in H'(M;R) = Hom(m; (M);R); evidently this is the class of the
homomorphism p,,.

Using the formalism of transverse measures, we can give another more refined charac-
terization of tautness.

Proposition 3.12 (Taut and transverse measures). Let M be a 3-manifold. Let F be
codimension 1 and cooriented. Then there is a closed 2-form w which is positive on TF
and in the cohomology class [w] if and only if [w]([p]) > 0 for all invariant transverse
measures [i.

Proof. If 11 is a transverse measure which is the limit of yu; associated to subsets \; of leaves
of F, the pairing [w]([x]) is the limit

. 1
() = i s |

so we must necessarily have [w]([¢]) > 0 for every such measure.

Conversely, suppose there is a cohomology class [w] with [w]([g]) > 0 for all invariant
transverse measures . This gives rise to a linear functional on the space of de Rham
cycles which is strictly positive on the cone of cycles represented by invariant transverse
measures. By the Hahn-Banach theorem this extends to a linear functional on the space
of all de Rham chains and therefore defines a cocycle. By convolution we can approximate
this functional by an honest closed form w in the class of [w]. 0

One can think of this just as easily in terms of volume preserving flows. A volume
preserving flow X can be thought of as a de Rham 1-cycle. The intersection pairing with
the homology class of a 2-cycle S is equal to the flux of X through S:

[X]N[S] = flux of X through S
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An equivalent statement of the proposition is that a 1-dimensional homology class [X] is
represented by a volume preserving transverse flow X if and only if [X] N [u] > 0 for all
invariant transverse measures fi.

FExample 3.13. A dead end component is bounded by a union of compact tori which col-
lectively represent zero in homology. An atomic transverse measure with equal weight on
each torus represents zero in homology, and obstructs the existence of a form w.

We now give two conditions that imply the existence of a nontrivial invariant measure.
The first is in terms of the conformal geometry of leaves, and the second is in terms of
holonomy.

3.2.1. Parabolic leaves. Let F be a foliation of a 3-manifold M. A Riemannian metric on M
determines a conformal structure on the leaves of F, and a leaf \ is parabolic if its universal
cover is conformally isomorphic to C. This property of a leaf does not depend on a choice of
a metric, since different metrics induce quasiconformally equivalent conformal structures,
and any Riemann surface quasiconformally isomorphic to C is actually isomorphic to C by
the measurable Riemann mapping theorem.

The following is due to Candel [2]:

Proposition 3.14 (Parabolic leaf). Let A be a parabolic leaf. Then there is a nontrivial
invariant measure 1 on F with support contained in the closure of \.

Proof. As in the proof of Proposition 3.10 it suffices to find a sequence of subsets \; of
A with length(d);)/area();) — 0. It is evidently enough to find such a sequence in the
universal cover of A, so without loss of generality we fix an isomorphism f : C — A, let B;
denote the ball of radius ¢, and set \; = f(B;). Then

wealh) = [ ae= [ ([ )

length(A),) = / ]
OBy

On the other hand,

so by Cauchy—Schwarz,

2
length(0)\;)? = (/ |df|) < 27Tt/ |df |> = 27rt£area(/\t)
OB OB dt

Now, for any fixed ¢

oo / 1
/ area’(\,.) gy — “ o
t

area(\,)? area(\;)

On the other hand, if lim inf length(0\;)/area(A;) > 0 then there is a positive constant C

so that
& area area’(
/t area = / length( 8/\ =C /

This proves the proposmon. O
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3.2.2. Branching and holonomy. Let F be a taut foliation of a 3-manifold M. Let F be
the foliation of the universal cover M. By Theorem 2.4 the leaf space L of F is a simply-
connected 1-manifold. However, it is entirely possible for L to fail to be Hausdorff: there
might be distinct leaves p, p’ of F and a sequence of leaves \; of F with points p;, q; € \;
so that p; = p € p and ¢; — q € p/. We refer to this phenomenon as branching of the leaf
space; if L is Hausdorff (and therefore homeomorphic to R) we say F is R-covered.

First we prove a proposition.

Proposition 3.15 (Branch implies holonomy). Let F be a foliation of a 3-manifold M
and suppose that F is not R-covered. Then F has nontrivial holonomy.

Proof. Let’s suppose J has no holonomy. If F contains a closed surface S, then an open
neighborhood of S is foliated as a product by copies of S. By Theorem 1.18 the set of
closed leaves is closed, so if it is open it is all of M and therefore M is an S-bundle over
St which is certainly R-covered (notice by the way this implies that a foliation with no
holonomy is taut).

If F contains an exceptional minimal set A we let N be a component of M — A, and
let N be the metric completion of N in the path metric. We may split N into two parts
— a collection of disjoint foliated I-bundles over non-compact surfaces, each with a single
boundary component (which, by the lack of holonomy, are necessarily foliated as a product)
and a compact codimension 0 submanifold G; the boundary of G decomposes into the
horizontal boundary 0,G contained in leaves of A, and the vertical boundary 0,G consisting
of trivially foliated annuli transverse to F that cut off the noncompact I-bundles. Let F
be a component of 0,G; note that F' is a compact surface with boundary. Since there is no
holonomy, an open neighborhood of F' in G is foliated as a product by copies of F. Once
again, Theorem 1.18 implies that the set of closed leaves of F|G is closed, and therefore
as before G = F x [ foliated by copies of F. Gluing back on the noncompact I-bundles,
we see that every complementary region to & is an /-bundle foliated as a product; we may
collapse these I-bundles (this is the inverse of the Denjoying operation) to obtain a new
foliation & which is R-covered if and only if F is, and has nontrivial holonomy if and only
if F does. B

Thus we are reduced to the case that JF is minimal. Suppose the leaf space L of &F
branches. Since F is minimal there are € and ¢ so that there is A;, u, i’ and p;, ¢; € \; with
pi = p € pand ¢ — q € /. Without loss of generality we may suppose p; — p and
¢; — q from below. Let € be such that F may be covered by product charts in such a way
that every metric ball of radius € is contained in a product chart. By minimality there is a
number ¢ > 0 such that for any metric ball U of radius €/3 every point in F may be joined
by a leafwise path of length less than . On the other hand, by compactness, there is a
number 0 > 0 so that if 7 is any transveral of length < ¢ then holonomy transport along
any path of length < ¢ takes 7 to a path of length < ¢/3. For each i let 7; be a path in \;
from p; to ¢;. If the pocket of leaves between \; and u were contained in product charts
all along ~;, then we would obtain a leafwise path from u to p' which is absurd; thus this
pocket must get large at some point, and there is an e-ball U; contained in it. Let V; be
the €/3-ball with the same center as U;. Let ¢ be such that p; and p are contained in a
transversal 7 of length < § and let § be a path in \; of length < ¢ from p; to some point
r for which there is o € m with a(r) € V;. Then holonomy transport of a(7) along «(d)
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takes it entirely inside U;. If we let I denote the interval in the leafspace L of F that 7
projects to, then « takes I properly inside itself, so that it necessarily has a fixed point
corresponding to a leaf of F that covers a leaf of F with nontrivial holonomy. O

Remark 3.16. In the proof of Proposition 3.15 we considered the case that F has an ex-
ceptional mininal set A, and considered a decomposition of the path completion N of a
complementary region N. In this decomposition the submanifold G is called the guts and
the noncompact I-bundles are the interstitial regions. We shall meet such decompositions
again in § 7.

From this we may deduce:

Proposition 3.17. Let J be a foliation without holonomy of a 3-manifold M. Then every
minimal set of F admits an invariant transverse measure of full support. Furthermore,
M is a surface bundle over a circle, and after possibly collapsing some complementary
I-bundles foliated as a product, F may be perturbed to a foliation by closed surfaces.

Proof. We have already seen that if F has a closed surface then M is a surface bundle
over S' and J is a foliation by closed surfaces, in which case we are done. Likewise if F
has an exceptional minimal set we have already seen that we may collapse complementary
regions (which are I-bundles) to obtain a new foliation that is minimal, R-covered (by
Proposition 3.15) and has no holonomy.

Thus L = R and since F has no holonomy, by Proposition 1.14 the action of 7 (M) on
L is conjugate to an action by translations. It follows that F admits a transverse measure
of full support and without atoms. Disintegrating this measure in a product chart gives a
closed nowhere zero 1-form « with ker(a) = T'F. This 1-form may be perturbed to have
rational periods (staying nowhere zero) exhibiting M as a surface bundle. 0

4. FINITE DEPTH FOLIATIONS AND THE THURSTON NORM

4.1. Surfaces and homology. We recall some standard facts about the relation between
homology classes and embedded surfaces in 3-manifolds. We work throughout with smooth
manifolds and smooth maps between them.

Lemma 4.1 (Embedded surface). Let M be a compact, oriented 3-manifold. Every class
in Hy(M,0M;7Z) is represented by the image of the fundamental class [S] of an oriented
compact surface S under a proper embedding S C M.

Proof. Lefschetz duality says Ho(M,0M;Z) = H'(M;Z). Since S' is a K(Z,1) this latter
group is in bijection with the set of homotopy classes [M, S?].

Every homotopy class of map from M to S! contains a smooth representative f : M — S*
for which 0 € S' = R/Z is a regular value. This corresponds to a cohomology class oy
whose value on the homology class of a loop v : St — M is given by the winding number
of f~.

Let S = f71(0). Since f is smooth and 0 is a regular value, S is a smooth, properly
embedded surface. It is cooriented by pulling back the orientation on S* at 0. Since M is
oriented, so is S, and there is a class [S] € Ho(M,0M;Z). For v : S* — M the algebraic
intersection number v M X is well-defined after we perturb 7 to be in general position, and
by construction this agrees with a¢([y]). Thus [S] is the desired class. O
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Lemma 4.2 (Regular preimage). FEvery compact properly embedded 2-sided surface S arises
as the preimage of the reqular value 0 for some smooth map f : M — S* pulling back the
(oriented) generator of H'(SY;Z) to the class Lefschetz dual to [S].

Proof. We identify a tubular neighborhood U of S with S'x(—1, 1). This maps by projection
m:S8x(—=1,1) = (—=1,1) and we can pull back a form ¢(t)dt by 7*, where ¢(t) is a bump
function with fjl o(t)dt = 1, to produce a Thom form 6 on M. The form 6 is closed, and
defines (by integration) a map f: M — R/Z by f(p) = f7 0 where ~ is any smooth path
from S to p € M. O

Corollary 4.3. Let o € Ho(M,0M;Z) be divisible by p; i.e. o = pda’ for some o/ €
Hy(M,0M;7Z). Then any surface S representing A is the disjoint union of p subsurfaces
Si,-+-, S, each representing o'

Proof. By Lemma 4.2 there is some f : M — S! for which S is the preimage of the regular
value 0. Since f pulls back the generator of H'(S;Z) to the class Poincaré¢ dual to a, the
image of 71 (M) in m(S') is contained in the subgroup of index p. Thus there is a lift
f M — S so that the composition of f with the degree p cover S* — S!is f. Under
this cover, 0 pulls back to p distinct points in S!, and the preimages of these points under
f are disjoint surfaces §;,---,.S, whose union is S. O

Note that we do not insist that the S; are connected; and in fact if o itself is divisble,
they won’t be.

4.2. Thurston norm. Let S be a compact oriented surface. We denote the Euler char-

acteristic of S by x(S5). If S is connected, define | S| := max(0,—x(S5)), and if the
components of S are Si,---, S, then define

Isl=>_lIsil
Thus [|S]] = —x(S) + 2s + d where s is the number of sphere components, and d is the

number of disk components.

Definition 4.4 (Thurston norm). Let M be a compact oriented 3-manifold. The Thurston
norm of a class o € Hyo(M,0M;7Z) is the minimum of ||S|| over all surfaces representing
the class . We denote this value |||

The name “norm” is misleading in general, since it might take the value 0 on some nonzero
class. Recall that a function || - || from a real vector space to R is called a semi-norm if it
is convex, non-negative, even, and linear on rays.

Proposition 4.5. Suppose M is irreducible and OM is incompressible. The function || - ||
extends uniquely to a seminorm on Hy(M,0M;R).

Proof. The function || - || is evidently even and non-negative. It is linear on rational rays by
Corollary 4.3. Therefore it suffices to show that it is convex. Let S,.S’ be two embedded
oriented surfaces with no sphere or disk component representing integral homology classes
«a and /. Put them in general position, and by an isotopy eliminate innermost curves or
arcs of intersection that are inessential in either surface. Let S” be obtained from S U S’
by resolving the intersections to produce a new embedded oriented surface. Because no
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intersection was inessential in either surface, no component of S” is a disk or a sphere.

Thus [|S”|| = ||S]| + ||5"]| and we are done. O
Theorem 4.6 (Thurston norm). If M has no homologically essential torus or annulus,
the seminorm || - || is a genuine norm. The unit ball for || - || is a finite sided rational
polyhedron.

Proof. Choose a basis by, - , b, for Hy(M,0M;7Z) and identify Hy(M,0M;R) with R" for
some n. Choose any representative surfaces S; for the basis elements and let 7" = max ||S;|.
By convexity and evenness, || || < T - || where || - ||; denotes the L' norm in the given
basis. Thus the unit ball for || - || contains an open neighborhood U of 0.

Let V denote the set of linear functions v : R” — R taking integer values on Z", and let
P denote the set of hyperplanes where v = 1 for some v € V. Observe that there are only
finitely many elements of P that do not intersect U.

If 0 is any other basis, there is a unique linear function v € V agreeing with || - || on
the 0. Let m(v) € P be the hyperplane where v = 1. Note that if w is not a positive
linear combination of b then [Jw|| > v(w) by convexity, and therefore m does not intersect
U except possibly in the cone spanned by the /.

If r is any projective ray with ||7|| > 0, we may find a sequence of bases b;,, that converge
projectively to r (so that r is in the positive cone for each basis), and let v, € V agree
with || - || on the b;, with hyperplane m(v,). When n is large, the intersection of 7(v,)
with the cone on the b, is close to the boundary of the unit ball; in particular, it lies
outside U. But then m(v,) lies outside U for all large n, so that v, is eventually constant
and agrees with || - || in a projective neighborhood of r. It follows that the boundary of
the unit ball is cut out by some subset of the finitely many 7(v) that do not intersect U,
so it is a finite sided rational polyhedron. Note that this argument works even if || - | is
degenerate somewhere.

It follows that || - || is piecewise rational linear, so if it takes the value 0 on some nonzero
vector, it takes the value 0 on a rational vector. Such a vector projectively represents a
nonzero integral class o with ||a|| = 0. Note that the only properties of || - || used up to
this point are that it is a seminorm taking integer values on integer vectors.

A norm-minimizing surface projectively representing a rational class with norm 0 is
necessarily an essential torus or annulus. 0

If M has no homologically essential torus or annulus, there is a dual norm on the vector
space H?(M,OM;R) given by the natural pairing with Hy. The unit ball in the dual norm
is likewise a finite sided rational polyhedron, whose vertices lie in H*(M,dM;Z).

Remark 4.7. If M is compact and irreducible and F' C M is a closed incompressible sub-
surface, we may define the Thurston norm on Hy(M, F';Z) in the obvious way, and extend
it to a seminorm on Hy (M, F'; R) which will be a norm unless some class is represented by
a surface with y = 0. The unit ball will be a finite sided rational polyhedron; the proof
goes through as above with essentially no modification.

4.3. Euler class inequality.

Proposition 4.8. Let F be a taut foliation, let S be any closed oriented surface, and let
f:S—= M be any map. Then |f*e(F)[S]| < ||I5]-
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Proof. Changing the coorientation of JF changes e(F) to —e(F) so it suffices to show
Fre(@)1s) < S]]

By abuse of notation we identify S with its image, which we take to be an immersed
surface in M. If S is compressible we may compress it without changing its homology
class or increasing ||S|| until it is incompressible. Choose a metric on M for which leaves
of F are minimal surfaces, and homotop S to a minimal representative. Then either S is
homotopic to a cover of a leaf of F in which case e(F)[S] = £x(5), or the foliation F N S
has only finitely many singularities at the (isolated) tangencies of S with leaves of F. Each
tangency s is a saddle or generalized saddle; at each of them the index of the singular
foliation index(s) is a negative integer. We may compute x(S) by summing these indices.
On the other hand, we may compute e(F)[S] by summing these indices times a character
which is +1 depending on whether the co-orientations of S and JF agree or disagree. Thus

e(F)[S] =D +index(s) < = index(s) = —x(S) = ||S|

s

0

Corollary 4.9. Suppose S is a compact leaf of a taut foliation F. Then S is norm mini-
mizing and e(F) is in the boundary of the unit ball of the dual Thurston norm.

Proof. This follows from the equality e(F)[S] = x(S5) together with Proposition 4.8. [

The remainder of this section is devoted to proving a kind of converse to this, due to
Gabai:

Theorem 4.10 (Gabai, minimizer is leaf). Let M be compact, oriented, and irreducible
with incompressible boundary. For every primitive nonzero class a € Hy(M,0M;7) and
every embedded surface S representing o of minimal norm there is a taut co-oriented foli-
ation F of M with S as a leaf.

It follows that every vertex of the dual Thurston norm ball is the Euler class of some
taut foliation.

The contents of the next few sections are all essentially due to Gabai [4] and we follow
his paper with only minor modifications.

4.4. Sutured manifolds. Theorem 4.10 is proved by induction with the help of an aux-
iliary combinatorial structure called a taut sutured hierarchy, analogous in many ways to
a hierarchy for a Haken manifold. The terms in the hierarchy are sutured manifolds.

In the (usual) theory of hierarchies one obtains manifolds with corners (sometimes ex-
pressed using the terminology ‘boundary pattern’) where facets of successive cutting sur-
faces meet; keeping track of this combinatorial data is important at many points in the
theory and its applications. For example, it is the key to the orbifold trick that reduces the
inductive gluing step in Thurston’s hyperbolization theorem to the last step. In Gabai’s
definition of a sutured manifold [4] the boundary of the manifold, and the boundary of
proper surfaces in it, are smooth; this leads to formulae for (relative) Thurston norm,
Euler characteristic etc. that fails to satisfy the natural properties we would like (additiv-
ity, convexity), and the correct treatment of disks leads to a proliferation of special cases.
Scharlemann [12| worked out a modified version of the theory with better properties and
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that works in some generality. We use the language of manifolds with corners, which is
intermediate between Gabai’s theory and Scharlemann’s.

Definition 4.11. A sutured manifold is a triple (M,~, 3) where M is a compact oriented
3-manifold, the sutures v = A(y)UT(7) consist of a union of disjoint closed annuli and tori
in OM, and f is a family of essential arcs dividing some annular sutures into rectangles.
Thus the trivalent graph T' := 0A(y) U 8 gives M the structure of a manifold with corners.
If R(y) denotes the closure of OM — ~, the components of R(7) are oriented R, and R_
(depending on whether the orientation agrees or disagrees with that of M) in such a way
that for each annulus A in A(7) one boundary component is on R, and one is on OR_.

Note that for each annulus A in A(y) the two components of JA inherit an orientation
from OR. that agree after an isotopy across A. This may be expressed by saying that the
core of each annulus gets a canonical orientation, agreeing the with the induced orientations
on 0A up to isotopy. Each component of 5 may also be oriented so that it runs from R_ to
R ; with this convention, the intersecton number of a component of A with a component
of B is positive.

Ezample 4.12 (Product sutured manifold). Let F' be a compact and oriented (not nec-
essarily connected) surface with corners V- C OF. Then (F x [,0F x I,V x I) is a
sutured manifold (called a product sutured manifold) in an obvious way with v = A(y) and
R, =Fx1land R_=F x0.

Let (M,~,3) be a sutured manifold, and let S C M be a properly embedded surface.
Then S inherits the structure of a surface with corners, and we may define x(S) by sub-
tracting 1/4 from the usual Euler characteristic at each corner. Let F© C 0M be some
subsurface. We may define the Thurston norm || - || on Ho(M, F') with respect to this mod-
ified Euler characteristic, discarding surfaces with x > 0 (note that this takes non-negative
values in iZ). Providing there are no essential surfaces in M with xy > 0 Proposition 4.5
and Theorem 4.6 go through essentially verbatim: || - || extends to a seminorm, which is
an honest norm unless M contains an essential surface with y = 0, and whose unit ball is
a finite sided rational polyhedron (possibly noncompact).

Definition 4.13. A sutured manifold (M, , ) is taut if M is irreducible and both Ry are
incompressible and norm minimizing in Hy(M, 7).

Ezxample 4.14. A product sutured manifold is taut if and only if x(F) < 0 as a surface
with corners.

Ezample 4.15 (Taut sutured handlebody). Figure 3 shows a taut sutured genus 2 handle-
body H,~ (in this example [ is empty). There are three annular sutures that decompose
OH into two thrice-punctured spheres. Since the core of the annuli are essential and non-
parallel in H, these thrice-punctured spheres are norm minimizing, so this sutured manifold
is taut.

Definition 4.16 (Decomposing surface). Let (M,~, ) be a sutured manifold, and let S
be a compact properly embedded oriented surface. Suppose one of the following holds for
each component \ of 05 N ~:
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FIGURE 3. A taut sutured handlebody.

(1) A is a proper essential arc in A(7) so that all intersection points of A N 8 have
positive sign;

(2) A is isotopic to, and coherently oriented with the core of a component of A(y) and
meets [ essentially (equivalently, all intersection points of AN 5 have positive sign);
or

(3) Ais an essential curve in some component 7" of T'(y), and every component of 0SNT'
is parallel to, and coherently oriented with A.

Suppose further that no circle component of S N R bounds a disk in either S or R, and
that no arc of S N R is inessential in R. Then S is a decomposing surface for (M,~, 3).

Let (M,~,f) be a sutured manifold, and let S be a decomposing surface. Let M’ =
M — N(S) where N(S) is a neighborhood of S. Let S, be the copies of S in dM’, where
S’ (resp. S') is the copy of S for which the co-orientation of S points out of (resp. into)
M’

Then M’ inherits the structure of a sutured manifold as follows:

(1) the sutures 4" are unions

v =(NM)UN(@OS, NR_)UN(DS_NR,)

(2) the curves 3’ are the closures of the components of 3 — S in M’ together with the
arcs N(OS, NR_)N(yNM') and N(OS_NRy)N(yNM).

We write (M, ~, ) A (M',+', ") and say that the decomposition is taut if (M,~, ) and
(M',~', ') are taut; see Figure 4.

Definition 4.17 (Taut sutured hierarchy). A taut sutured hierarchy is a finite sequence of
taut decompositions

(M07707 ﬂ(]) 5”1) (Mlvvlvﬁl) '§"2> T ’5\"3 (Mn7,yn7 671)

where (M,,, v, Bn) is a product sutured manifold.

Our goal is to prove:
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3 3 O

FIGURE 4. How « and 8 in OM decompose after cutting along S into " and
B in OM’'. The surfaces R and R’ are in gray, the sutures 7 and 7/ are in
white, the curve 0S5 is in blue, and the arcs § and " are in red.

Theorem 4.18 (Gabai; taut sutured hierarchy exists). Any taut sutured manifold admits
a taut sutured hierarchy.

Following Gabai we shall prove this in two steps. First: any taut sutured manifold
which is not a product admits a taut decomposition of a special kind; and second: there is
a well-ordered complexity on taut sutured manifolds that vanishes only on product sutured
manifolds, and that strictly decreases along taut decompositions of the special kind.

Definition 4.19 (Special decomposing surface). A decomposing surface S for (M, ~, 3) is
special if either

(1) S is connected and S C 7 but S is not isotopic to a component of R; or

(2) OS intersects each nonplanar component of R in a (possibly empty) family of parallel
homologically essential loops, and each planar component in a (possibly empty)
family of parallel homologically essential arcs.

Lemma 4.20. Let (M,~, ) be a taut sutured manifold, and suppose some component of
OM is not a sphere. Then a special decomposing surface exists.

Proof. We find S in a component of M whose boundary is not a sphere. For any compact
oriented 3-manifold the kernel of Hy(OM) — Hy(M) (coefficients in R) is a Lagrangian
subspace L. Let J be the subspace of Hy(0M) spanned by the cores of A(7) (note that
J is isotropic), and let Jg be the subspace of J spanned by OR; where R; ranges over the
components of R.

Certainly Jg C JNL. If JN L is bigger than Jy it follows that Ho(M,~) is not generated
by the [R;], and therefore we may find a primitive integral class o not in the image. Add
sufficiently many copies of [R.] to « if necessary so that da is a non-negative multiple
of cores of A(7); then any norm-minimizing surface S representing « will be a special
decomposing surface.

So let’s assume Jg = J N L. The dimension of J is equal to half the dimension of
H(OM) if and only if R is planar and T(vy) is empty. Otherwise intersection number
defines a map L/Jgr — (J/Jgr)* which necessarily has a nontrivial kernel. In this case let
z € Hi(OM;Z) N L be nonzero and have trivial intersection number with each component
of A(y). By adding a sufficiently large multiple of [0R,] if necessary, we may assume z
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is represented by a l-manifold I' whose components either lie in A(y) (and are positively
oriented) or are disjoint from A(y) and essential in R. For each component R; of R we
may replace I' N R; by a homologous collection of parallel essential loops, and then any
norm-minimizing surface S representing a non-trivial class in Hy(M,I") will be special.
Finally we are in the case that every component of R is planar, T'() is empty, and
JNL = Jg. Thus L/Jr — (J/Jgr)* is surjective, so we may choose a nonzero class
z € Hi(OM;Z) with the property that for each component R;, intersection number with
z is nonzero for at most two components of OR;. We may thus represent z by I' whose
intersection with each R; is a family of parallel essential arcs, and choose a norm-minimizing
surface S representing a nontrivial class in Ho(M, ") as above. O

Lemma 4.21. Let (M,~,[) be taut. Then there is a special decomposing surface S that
induces a taut decomposition (M,~, 3) A (M.~ p").

Proof. Let S be a special decomposing surface, representing some class in Ho(M, 0S5 U 7).
Because the unit ball of the Thurston norm is a finite sided polyhedron, there is a positive
no so that the classes [S] + n[R] and [R] intersect the same (closed) face of the norm ball
for all n > ng. Replace S by a new norm minimizing surface S’ representing the class of
[S] 4+ n[R]. The surface S’ is special if S is. Furthermore, both S” and S’ + R are norm
minimizing in M and therefore also in M’. But 8"+ R = R’ so R’ is norm-minimizing in
M'. Evidently M’ is irreducible if M is, so M’ is taut. O

Certain surfaces always induce taut decompositions:

Lemma 4.22. Let (M,~,3) be taut, and let S be a decomposing surface which is either of
the following:

(1) an annulus with one component in each of Ry; or
(2) a disk which intersects 7y in two components.

Then (M,~, ) A (M',~',5") is taut.

Proof. M’ is evidently irreducible. In either case each of R/, has the same norm as R, so if
it were not norm-minimizing one could find a smaller norm representative of R, contrary
to the assumption that M is taut. O]

4.5. Windows and Guts. In this section we sketch the proof of Theorem 4.18. The full
argument involves a rather tedious analysis of a number of special cases, and it does not
seem to make sense to reproduce it here when [4] and [12]| are available.

A sutured manifold (M, ~, #) admits a decomposition into two pieces: a window W, which
is an [ bundle whose fibers run between R_ and R, , and the guts G which is the remainder.
This is closely analogous to the JSJ decomposition for a manifold with boundary. If we
think of M as an orbifold with mirrors along v that meet at right angles along [, we can
take a regular manifold cover M perform the JSJ decomposition equivariantly in M and
push the decomposition down to M.

Every component A of A(7) that meets some component of 5 bounds a nontrivial com-
ponent of W, since a parallel copy of A pushed into M but without corners is not parallel
to A as a surface with corners. In particular, no component of G intersects f3.
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Every component of G is a pared hyperbolic manifold with respect to 7 (so that it admits
a hyperbolic structure for which the sutures are cusps and R4 are totally geodesic). Ignor-
ing the sutures, it might admit compressing disks, but the boundary of every compressing
disk must intersect an even number of sutures, and this number must be greater than 2
(or else we could split off a product squarex [ into W); thus as a surface with corners, each
compressing disk has Euler characteristic a negative integer.

For simplicity let’s suppose M = G consisting of a single component. A decomposing
system is a maximal set of non-parallel compressing disks D = {D;} meeting ~ efficiently
in such a way that every component of G — D is either irreducible with incompressible
boundary, or it is a B? meeting D in three components.

We shall define a complexity function associated to G consisting of an ordered pair of
complexity functions. The first is the height h(G) of the non-ball components of G — D; this
is the maximum length of a partial hierarchy for G— D using only non-disk surfaces that are
incompressible and boundary incompressible in G — D (see Chapter 1, Proposition 4.10).
The second is the inder X(G) := Y x(D;)? (compare Scharlemann [12], Definition 4.10);
we may assume without loss of generality that our disk system D minimizes X. Now
let’s consider the complexity function for G consisting of the pair (h(G), X(G)) with the
lexicographic ordering.

Lemma 4.23. The set of values of the complexity function (h(G), X(Q)) is well-ordered,
and equals the minimum value (0,0) if and only if G is empty.

Proof. Each of h(G), X(G) is a non-negative integer, so the well-ordered property is im-
mediate. If h(G) = 0 then G is a handlebody. If X(G) = 0 it admits a system of disks
each meeting the sutures in two components; but this implies that G is a product sutured
manifold, so that it is not contained in the guts after all. O

We shall show if (h(G),X(G)) > (0,0) that there is a special decomposing surface
inducing a taut decomposition and strictly reducing the complexity.

Definition 4.24. Let FE be an innermost disk of D — S which becomes a proper disk £’
in the sutured manifold M’ obtained from M be decomposition along S. We say E is a
good disk for S if x(E') > 0.

Note that yx(E’) (and therefore whether E is good or not) depends not only on the
topology of M, D, S but the orientation on S and R., since these determine the sutures
of M’, and therefore the corners of E’. Seven examples of good disks are illustrated in
Figure 4.2 from [4].

Lemma 4.25. Let S be a special decomposing surface for M = G inducing a taut decom-
position, and suppose that S cuts off a good disk E C D. Let Sg be the surface obtained
by boundary compressing S along E. Then Sg induces a taut decomposition.

Proof. If x(E') > 0 then one of R/, is compressible in M’, contrary to the hypothesis
that S is taut. Therefore x(F’) = 0, and E’ itself induces a taut decomposition of M’ by
Lemma 4.22. But this is precisely the result of decomposition along Sg. OJ

Proposition 4.26. Let (M,~,3) be a taut sutured manifold. Then either M is a product
sutured manifold, or there is a special decomposing surface S inducing a taut decomposition
that strictly decreases the complexity of the guts.
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Proof. 1f the intersection of S with the non-handlebody part of G is essential, decomposition
along S reduces h(G). Otherwise it induces a nontrivial decomposition of the handlebody
part. The components of D — S give rise to a decomposing system D’ for G’. If there were
a good disk F in D — S we could have modified S to Sg by Lemma 4.25, thus without loss
of generality we may assume there is no good disk. A disk D; of D is decomposed into k
subdisks D] ; in D" where each ||D; ;|| > 1 and ) [|D; ;|| = || Dil| so that X(G') < X(G) as
claimed.

One must check that the part of S in the window does not induce a decomposition that
creates new gut pieces, and that if the guts are nonempty, one may always find a special
decomposing surface that intersects the guts essentially, but these facts are routine. ([l

This concludes our sketch of the proof of Theorem 4.18.

4.6. Taut foliations from hierarchies.

Definition 4.27. Let (M,~, ) be a sutured manifold. A foliation F of M is taut if

(1) F is tangent to Ry and transverse to v;

(2) F|A(y) is transverse to 3 and the I fibers;

(3) there is a proper compact 1-manifold X with 0X C R transverse to F and inter-
secting every leaf.

The main theorem of this section is

Theorem 4.28 (Gabai; taut foliation exists). A sutured manifold admits a taut foliation
iof and only of it is taut.

Proof. One direction is easy. Let F be a taut foliation of (M,~, 5). Thinking of M as an
orbifold with mirrors along v and corners along 3, we may take a manifold cover M and
pull back J to a foliation F on M transverse to a proper compact 1- manifold X. Doubling
M along its boundary gives rise to a closed manifold DM with a foliation DF that is
transverse to a proper compact 1- manifold DX and is therefore taut.

The preimages R, become compact leaves of D7 and are therefore norm- minimizing in
DM by Corollary 4.9; consequently Ry are norm-minimizing in M. Furthermore, since
DM is irreducible, the same is true of M. Thus (M,~, 5) is taut.

Now we show the converse. By Theorem 4.18, there is a taut sutured hierarchy for
(M,~, ) along special decomposing surfaces. A product sutured manifold obviously ad-
mits a taut (product) foliation. Thus to prove the theorem it suffices to show that if
S decomposes (M,~,5) to (M',~',5") and (M',+/, ") admits a taut foliation F', then
(M,~, ) admits a taut foliation F.

By Lemma 4.20 we may assume S is a special decomposing surface. If S is connected
and 0S C 7 then M may be obtained from M’ by identifying S’. which are components
of R/, and therefore leaves of J’; The resulting foliation J is evidently taut if ¥ is. Thus
we may assume that 05 intersects Ry nontrivially, and for each planar (resp. nonplanar)
component the intersection is a family of parallel oriented homologically essential arcs
(resp. loops).

The result of splitting along S produces new sutures; define 7 := v —~v = N(95. N
R_)UN(9S" NR,). Each circle of 95 N Ry in a non-planar component of R gives rise to
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a new annulus in Z, and each proper arc of SN R in a planar component of R gives rise

to a new rectangle in Z. See Figure 5.
R,
5, (

FIGURE 5. The surface S splits a non-planar component of R, in M’, giving
rise to a new annular suture Z C «'.

Ry

(o

The first step is to glue S, C R/ to S’ C R_. This produces a manifold M" home-
omorphic to M with a foliation F” that is transverse to OM" along the image of 7/. See
Figure 6. We must add a suitably foliated region to M” to obtain M in such a way that
F"Z closes up in M to produce F.

FIGURE 6. After gluing S, to S’ the part of the foliation " transverse to
Z is exposed.

It is clear that this modification can be performed independently on each component of
R+ intersecting 0S. Let F' be such a component, let F’ be the image of F' in M’ and let
F"be F"in M". We let 0, Z be the part of 07 in OF". If Z is an annulus (associated to a
circle of 9S N R then 0,7 = 0Z consists of two circle components of OF"; otherwise 9,7
consists of two arc components of F” ending at corners.

Because S is a special decomposing surface, 95 N F' is a union of parallel, homologically
essential circles or arcs in F'. For simplicity we shall assume in the sequel that 9S N F
consists of a single component.

Case 1: F” is disconnected.

Let the two components of F” be F}" and F;' where the subscripts stand for top and
bottom, where the meaning is as indicated in Figure 6. Let 0zF] = 0F}' N 0, Z; this is
either an arc (ending at corners) or a circle. Since 9S N F' is homologically essential but
nevertheless separating, it pairs nontrivially with some proper arc with endpoints on both
sides of 05; it follows that OF;" — 0z F) is nonempty.
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We attach F}' x I to M" by identifying F}’ x 0 with F}' and 0, F} x I with Z, and let M
be the result. It remains to extend the foliation F”|Z over F}’ x I so that it is transverse
to the I fibers and tangent to F}’ x 1.

Case la: 0zF/ is an arc.
Since 0z F' is simply-connected, the foliation F”|Z is a product and we may extend F”|Z
to a product foliation of F}' x I.

Case 1b: 0,F) is a circle.

We construct a foliation of F}' x I from a representation p : 71 (F}') — Homeo™ (I). Since
0zF} is a circle and OF]' — 0zF/ is nonempty it follows that F}’' is a compact orientable
surface with at least two boundary components, and therefore its fundamental group is free,
and we may take 0zF) to be a free generator. We may therefore construct p arbitrarily
on the other free generators (for instance, we can take it to be the identity element). This
concludes the proof in Case 1.

Case 2: F” is connected.

In this case 0z F” consists of two components, that we denote 9,F” and 0, F". Define
My := M" and inductively we build M,, from M,,_; by attaching F” x I to M,_; by gluing
F"” x 0 to F" and gluing 0,F" x I to Z, and then relabeling so that F” x 1 becomes the
new copy of F” in M,, and 0;F" x I becomes the new copy of Z in M,,.

We need to extend the foliation inductively over each F” x I given the restriction to
OpF" x I. As before there are two cases (that J,F"” is an arc, or that it is a circle) and
as in Case 1 the extension is straightforward: a foliated bundle over an arc is trivial and
may be extended as a trivial product; m; of a surface with (at least) two circle boundary
components is free, and any of the circle boundary components may be taken to be a free
generator. See Figure 7 for an example of a (trivially) foliated F” x I where F' is a pair of
pants decomposed by an arc of 05.

FIGURE 7. A foliated F” x I where F' is a pair of pants decomposed by an
arc of 0S.

This gives the extension over M, for each n. Now take M., to be the infinite union; this
is an open manifold that may be compactified by adding a copy of F' in such a way that
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the foliation spirals around F' and extends to the compactification with F' as a closed leaf.
This compactification is M. This concludes the proof in Case 2.
This completes the induction step, and therefore the proof of the theorem. O

4.7. Smooth and Finite Depth. In the proof of Theorem 4.28 there is a great deal of
choice in the choice of holonomy in the foliated /-bundles extending the foliation up the
sutured manifold hierarchy at the induction step. A judicious sequence of choices allows
one to construct taut foliations with certain additional properties.

Definition 4.29. Let F be a foliation. A leaf X\ has depth 0 if it is compact, and has depth
n if A — X is a union of leaves of depth < n but not < n — 1. A leaf is finite depth if it has
depth n for some n.

A foliation has depth n if every leaf has depth < n and some leaf has depth n. A foliation
has finite depth if it has depth n for some n.

Theorem 4.30 (Finite depth foliation). Let M be a compact irreducible, orientable 3-
manifold, possibly with incompressible boundary, and let S be a Thurston-norm minimizing

surface. Then there is a finite depth taut co-orientable foliation F with S as a compact
leaf.

Proof. One may construct a taut sutured hierarchy that begins by decomposing along S,
and then build a taut foliation J as in the proof of Theorem 4.28. We show by induction
that F can be chosen to be finite depth.

This is obvious at the base step, since a product foliation is depth 0. Let’s suppose by
induction, and with notation as in the proof of Theorem 4.28, that F’ is a finite depth
foliation of M’. In Case 1 the foliation F is obtained from F by adding a foliated [
bundle over a compact surface; in either case if we extend the holonomy by the identity on
additional free factors, a leaf of F restricted to M’ is equal to a leaf of . Thus JF is finite
depth if F is.

In Case 2 F is obtained from F by adding countably many foliated I bundles over
compact surfaces which spiral around a new closed leaf of F. If each foliated I bundle has
holonomy extended by the identity on additional free factors, then as before J is finite
depth if F is. O

A finite depth foliation is typically not smooth: in Case 2 where 0,F" is a circle, and F
has nontrivial holonomy around this circle, and we extend the holonomy repeatedly by the
identity on additional free factors, Kopell’s Lemma (i.e. Theorem 1.9) says that F cannot
be made C? near the closed boundary leaf.

When the genus of the boundary leaf is > 1, or if the boundary leaf itself has boundary,
one may modify the construction as follows. We have a surface F” and two distinguished
boundary components 9,F"” and 0;F". Let o € Diff"(I) be the holonomy of the foliated I
bundle around Jd,F"” in the foliated annulus Z C Mj. If F” has genus g with h boundary
components, we may choose free generators ay, by, - ,a4-1,by_1,c1, -+ ,cp_1 for m (F")
where ¢; represents the loop 9,F” and H;L;ll ¢ H?;i [aj, b;] represents the loop 0, F".

If h > 2 (equivalently, if OF is nonempty) then by defining p suitably on ¢;_; we may
ensure that the foliation is trivial on 0,F”, and then this foliation may be extended as a
product over each successive F” x I factor and spun (smoothly) around the limit leaf F;
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in fact, if we choose suitably coordinates near F' we may arrange that the foliation is C'*°
tangent to the identity along F'.

If h = 2 but ¢ > 1 then the holonomy around 9,F” and 0,F” differ by a product
of g — 1 commutators. The group Diff*(I) is not perfect; however the subgroup I' of
diffeomorphisms C'™ tangent to the identity at 0 and 1 is:

Theorem 4.31 (Sergeraert). Let I' be the group of orientation-preserving diffeomorphisms
of I that are C'*° tangent to the identity at the endpoints. Then I' is perfect.

Proof. 0

See [13] for a proof.
From this we may conclude:

Theorem 4.32 (Smooth foliation). Let M be a compact irreducible, atoroidal orientable 3-
manifold, possibly with incompressible boundary, and let S be a Thurston-norm minimizing
surface which either has boundary, or is closed of genus at least 2. Then there is a C*
taut co-orientable foliation F with S as a compact leaf.

We sketch the proof.

Proof. Fix notation as in the proof of Theorem 4.28. Suppose by induction that F’ is C*
and the germ of the holonomy around every compact leaf is C*° tangent to the identity.
When we glue up M’ to produce M” the holonomy pieces together smoothly along F’, and
a as above is C* tangent to the identity at 0 and 1. Thus we may write o as a product
of n commutators in I" for some n. Let m = [n/(g — 1)]. Observe that M, — M, consists
of m copies of F” x I concatenated end to end; i.e. it is of the form ¥ x I where X has
genus m(g — 1) (and possibly multiple boundary components if A > 2). It follows from
Theorem 4.31 that we can choose a smooth foliation on M,, — M, that is C*° tangent to the
identity along the boundary leaves, which fits together with ¥’ along Z in M,, and which is
foliated as the identity along the new copy of Z in M,,. This may be extended as a product
foliation over M, spiraling around a compact leaf F'. If we choose suitable coordinates on
the end of M., the germ of the holonomy of the resulting foliation is C'*° tangent to the
identity along F'. This completes the induction step and proves the theorem. O

4.8. Branched surfaces. An equivalent way to think of a sutured manifold is to collapse
the annular regions to (oriented) polygonal curves, collapsing /3 in this way to vertices, and
to comb the boundary into a branched surface with corners, branched along the sutures.
See Figure 8. In this picture, if S is a properly embedded decomposing surface S in (M, ),
the boundary 0S gets corners where it is tangent to OR. and cusps where it is transverse
to 8Ri

5. HOLOMORPHIC GEOMETRY

There are two key theorems in the classical theory of Riemann surfaces. The first, the
Uniformization Theorem of Koebe—Poincaré—Klein, says that any Riemann surface admits
a metric of constant curvature in its conformal class, unique up to scaling. The second
is Poincaré’s theorem that every Riemann surface is algebraic, equivalently it may be
holomorphically embedded in CP" for some n.
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FIGURE 8. The boundary of a sutured manifold collapses along A(7) to a
branched surface.

Somewhat remarkably both of these theorems have their analogs in the theory of taut
foliations of 3-manifolds.

5.1. Uniformization. Suppose J is an oriented, co-oriented foliation of a 3-manifold M.
A Riemannian metric on M restricts to a Riemannian metric on each leaf, giving it an
associated holomorphic structure. An elliptic leaf is topologically S?, so if F contains such
a leaf by the Reeb Stability Theorem 1.21 M is S? x S and F is the product foliation.

If F taut contains a parabolic leaf then necessarily M is toroidal:

Proposition 5.1 (Parabolic implies toroidal). If F taut contains a parabolic leaf then M
contains a homologically essential incompressible torus.

Proof. Since F is taut, M is irreducible. Let A be a parabolic leaf of F covering a parabolic
leaf of F. We have already seen in the proof of Proposition 3.14 that there is a sequence
of subdisks A; with

length(0\;)/area(\;) — 0
so that \;/area); converges to the homology class [u] € Ho(M;R) of a nontrivial invariant
transverse measure fi.

Since M is compact, there is a constant C' so that any homologically trivial loop v in M
bounds an immersed surface S for which area(S), diameter(S) and |x(5)| are bounded by
C'length().

Let m(\;) be the projection of \; to M, and let S; be an immersed surface bounding
m(0\;) and satisfying the inequality above. Then F; := S; U m();) is a sequence of closed
immersed surfaces with [F}]/area();) — [u] and |x(F;)|/area();) — 0. It follows that the
Thurston norm of the class [u] is zero, and therefore that some homology class in M is
toroidal. O

Consequently, if M is atoroidal, any taut foliation F of M has all leaves conformally
hyperbolic.

Theorem 5.2 (Candel, Uniformization). Let F be a foliation of M. Then M has a C°
Riemannian metric in any conformal class for which every leaf of  has constant curvature
—1 if and only if every invariant transverse measure j has x([u]) < 0.

Proof. A measure supported on spherical leaves obviously has x > 0 and we have just
seen that a parabolic leaf gives rise to a measure with x = 0. If F is a foliation with
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all leaves hyperbolic and p is an invariant transverse measure, the Gauss-Bonnet formula
gives x < 0. So we are left to show that if every leaf of F is conformally hyperbolic, then
M has a metric for which every leaf of & is individually hyperbolic.

Fix a Riemannian metric ¢ on M. Since each leaf is conformally hyperbolic, there is a
unique function f — R* which is leafwise smooth and so that fg is leafwise hyperbolic.
Our task is to show that f is continuous.

Let’s work in the universal cover for simplicity. Fix a point p € X and let p; € ),
converge to p. Let D denote the open unit disk in C. For each i there is a conformal
isomorphism ¢; : D — \; taking 0 to p;, unique up to precomposing with a rotation. Give
D its hyperbolic metric, so that f(p;) = |d¢;(0)| 2.

If the maps ¢; were equicontinuous we could extract a limit of any subsequence. This
can only fail if the derivatives of the ¢; blow up somewhere. If the derivative of ¢; blows up
near infinity we use a trick due to Brody [1|: we may precompose ¢; with ¢, : D — D which
takes p to (1—e)p for some small € so that the derivative of ¢;1). is maximized at some point
in the interior. After precomposition with another Mébius transformation, we may assume
|d(¢it)e)| is maximized at 0. If this maximum still blew up as i — oo, we could extract in
the limit (by rescaling the domain so that the derivative at 0 has norm 1) a nonconstant
conformal map ¢ : C — p with image contained in some leaf p of . But this is impossible
if i is conformally hyperbolic, and therefore the maps ¢;1. are equicontinuous after all for
any fixed € > 0. Thus after passing to a diagonal subsequence (taking ¢ — 0) we deduce
that the ¢; converge on compact subsets to a nonconstant conformal map ¢ : D — \. The
map ¢ is not necessarily a covering map (or even surjective) so by the Schwarz Lemma the
conformal covering map ¢, : D — X has a bigger derivative at 0 than ¢. Said another way,
f(p) <liminf f(p;) so that f is lower semicontinuous.

Conversely, if p € A and ¢, : D — A is the uniformizing map, for any e the map ¢,1. may
be approximated by conformal maps from D to \; taking 0 to p;. It follows that f is upper
semicontinuous, and therefore continuous. It follows a posteriori from the Schwarz Lemma
that the uniformizing maps ¢; : D — \; as above actually converge to ¢ : D — . U

Remark 5.3. Tt is not necessarily true that the metric provided by Theorem 5.2 is smooth
in transverse directions (though one can show it is Holder continuous for some exponent).
However it is true that the partial derivatives of all orders in leafwise directions are con-
tinuous on M. This follows from the Cauchy integral formula given what we have already
proved.

By mollifying the metric one can arrange for g to be smooth on M and have leafwise
curvature pinched between —1 =+ €.

5.2. Projective Embeddings.

Theorem 5.4 (Ghys, Ample). A smooth co-orientable foliation F of M is taut if and only

if there is some integer n, and an embedding o : M — CP"™ which is holomorphic on each
leaf.

Proof. Suppose there is such a ¢. The pullback of the Kéhler form on CP" is a closed
2-form on M, positive on T'F, so F is taut.

Conversely, suppose J is taut, so there is an embedded transversal v that intersects
every leaf. Associated to v there is a (complex) line bundle L over ¥ whose holomorphic
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sections restrict to local holomorphic functions on F with poles of order at most 1 at 7.
We shall show that L is ample, so that L®* has many global holomorphic sections when k
is big, and the ratios of these sections give the desired map to CP".

The construction of these global sections is essentially due to Poincaré. First suppose
for simplicity that every leaf is conformally hyperbolic, so that by Candel’s Theorem 5.2
we may assume that each leaf is isometric to H?. Let X be a smooth section of UT,F.
In the unit disk model for H?, let v be a unit vector at the origin, and let R(z)dz* be
a quadratic holomorphic differential where R(z) = P(z)/z" for some polynomial P(z) of
degree at most k.

If we lift to the universal cover, for each point p in a lift of v contained in some leaf A
of F, there is a unique isometry A — H? taking p to 0 and X (p) to v. Pulling back defines
a quadratic holomorphic differential on A\. Summing leafwise over all transverse lifts of
~+ gives a global holomorphic section of L®*. Taking k big enough gives many sections,
evidently enough to separate points of M.

If some leaf is conformally spherical, by Reeb stability M is S? x S* foliated by spheres,
and we may take ¢ to be projection to S? = CP'. If there is a mixture of hyperbolic and
parabolic leaves we take a regular branched cover of M over v and pull back F to obtain a
foliation G of a new 3-manifold N whose leaves are now all hyperbolic. We may construct
leafwise quadratic holomorphic differentials on G as above, and average them under the
deck group of the cover so that they descend to differentials on F. 0

6. UNIVERSAL CIRCLES

The universal cover of a hyperbolic surface is conformally equivalent to the unit disk,
and may be canonically compactified by added a circle at infinity. The action of the deck
group extends continuously to an action on this circle.

If F is a foliation of M without spherical or parabolic leaves (for instance if M is atoroidal
and ¥ is taut) Candel’s Uniformization Theorem 5.2 says that M admits a (C°) Riemannian
metric for which every leaf becomes simultaneously a hyperbolic surface. If F is the pulled
back foliation of the universal cover M then every leaf A of F may be compactified with a
circle at infinity S (\) and the deck group of M acts on this collection of circles.

A wuniversal circle is a single ‘master circle’ S} . that collates and unifies the distinct
S (M) in a coherent way so that the deck group (i.e. (M) becomes a group of auto-
morphisms of S} . . Before giving a precise definition we must introduce some additional

terminology; this is done in the next two subsections.

6.1. Circle bundle E. Let J be a taut foliation of M, and let L denote the leaf space of
F. Novikov’s Theorem 2.4 implies that L is a connected, simply-connected 1-manifold; the
catch is that L is typically not Hausdorff. .

We say that two distinct leaves pu, A € L are comparable if there is a transversal 7 to F
from p to A; equivalently if there is an embedding of an interval I — L whose endpoints
are taken to p and A respectively.

If F is co-orientable, then a choice of co-orientation determines an orientation on L and
(since L is simply connected) a partial order, defined on comparable pairs of leaves, where
i < A if and only if there is a positively oriented transversal 7 from g to A. The action
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of m (M) on L preserves the orientation, and therefore the partial order and the notion of
comparability.

Now suppose that the leaves of F are all conformally hyperbolic, so that we may simul-
taneously uniformize them with a suitable metric on M. Each A € L determines a circle
S1 (M) and we let E denote the union of these circles.

One may topologize E as follows. A transversal 7 to F projects to an interval in L, and
we may denote the associated family of circles as E|7. On the other hand, the unit tangent
bundle UTJ restricts along 7 to a circle bundle UTF|r with total space homeomorphic to
a cylinder. For each leaf A intersecting 7 the restriction UT'F|r N A is a circle. Each vector
in this circle is tangent to a unique oriented geodesic ray in A, that limits to a unique point
in S!_(\); thus we obtain an ‘endpoint map‘ ¢ : UTF|T N A — S (\) that is evidently a
homeomorphism. The family of maps as we vary over 7 is a bijection e : UTF|t — E|r
and we may topologize E|r by declaring that this map is a homeomorphism.

Since leaves vary continuously on compact subsets, this homeomorphism is independent
of the choice of transversal 7; varying over all transversals defines a topology on E for
which it becomes a circle bundle over L in the usual sense.

6.2. Monotone maps. The universal circle does not relate to the individual circles S! ())
by homeomorphisms, but by a slightly weaker relation, that of a monotone map:

Definition 6.1 (Monotone map). A map f : S* — S is monotone if f has degree 1 and
the point preimages of f are contractible; i.e. for all p € S! either f~!(p) is a single point,
or f~!(p) is a connected interval.

If f:S9' — Stis monotone, it lifts to f : R — R where the monotone property says that
if p,q € R and p > ¢ then f(p) > f(q).

Definition 6.2 (Core). If f: S' — S' is monotone the core of f, denoted core(f), is the
set of points where f is not locally constant.

The complement of core(f) consists of countably many open intervals called the gaps.
The value of f is constant on the closure of each gap.

Lemma 6.3 (Perfect). For any monotone f : S' — S the set core(f) is perfect; i.e. it
has no isolated points.

Proof. 1f © € core(f) is isolated, it is in the closure of two distinct gaps, I and J say. But
then f|I = f(x) = f|J so that f is locally constant at x contrary to definition. O

Lemma 6.4 (Semicontinuity). The core of a family of monotone maps varies lower semi-
continuously. That is, if f; - S* — St converges in the compact-open topology to f : St —
St and x € core(f) there are x; € core(f;) with x; — x.

Proof. Since x € core(f), for any open interval I containing z the values of f on Ol are
distinct. If f; — f then the values of f; on OI are likewise eventually distinct for sufficiently
large 4, thus there is some z; € I N core(f;). O

If F' is a path-connected family of monotone maps, we let core(F') denote the closure of
Urercore(f). Note that core(F) is perfect by Lemma 6.3. Two closed subsets X and Y of
St are said to be unlinked if there do not exist disjoint two element subsets A C X and
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B C Y that are linked as a pair of S% in S'. Note that the perfectness of cores implies
that core(F') and core(G) are unlinked if and only if core(F') is contained in the closure of
a single gap of core(G) and vice versa.

Proposition 6.5 (Unlinked families). Let F' and G be two path-connected families of
monotone maps. Suppose for all f € F and g € G that core(f) and core(g) are unlinked.
Then core(F') and core(G) are unlinked.

Proof. We first show that if we fix g € G that core(F') and core(g) are unlinked. There are
countably many gaps I; for core(g), and by hypothesis for all f € F' there is an index i so
that core(f) C I;. Since core(g) is perfect, the I; are disjoint, and therefore the subset F;
of F with core(f) C I; is well-defined.

We claim that each F; is closed. For, if f; € F; so that there are x; € core(f;) N I; and
fi — fbut x € core(f)NI for i # k then by Lemma 6.4 there are y; € core(f;) converging
to . But then y; is not in I; for sufficiently large j contrary to the fact that core(f;) and
core(g) are unlinked. This contradiction proves the claim.

A Theorem of Sierpinski [14] says that a path-connected set does not admit a nontrivial
decomposition into countably many closed subsets; thus F' = F; for some i and core(F')
and core(g) are unlinked.

The same argument, replacing ¢ with ' and F' with G, shows that core(F") and core(G)
are unlinked. 0

6.3. Universal Circles. We are now in a position to give the definition of a universal
circle. For simplicity we give the definition for J co-oriented.

Definition 6.6. Let J be a co-oriented foliation of M with conformally hyperbolic leaves,
and let L denote the leaf space of F. A wuniversal circle for F consists of

1. and a representation ¢y, : 71 (M) — Homeo™ (S?);
(2) for each A € L a monotone map m : S.. — SL ()\) depending continuously on A

univ
such that

(1) for all A € L and « € w1 (M) there is a commutative diagram:

(1) an oriented circle S}

Sl (buniv (Oé) Sl

univ univ

- e
SN —— Si(a(N)

(2) if 4 and A are incomparable then core(m,) and core(r,) are unlinked in S}

The next few subsections will be devoted to a proof of the following

Theorem 6.7 (Thurston, Calegari-Dunfield; Universal Circles). Let F be a co-oriented
foliation of M with conformally hyperbolic leaves. Then F admits a universal circle.

6.4. Leaf Pocket Theorem. Our first step is to compare the behavior near infinity of
nearby leaves of F. It will turn out, for each leaf A, that there is a dense set of S (\)
so that geodesic rays in A asymptotic to this subset stays ‘close’ to geodesic rays in all
sufficiently nearby leaves.
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This statement is complicated by the fact that there is typically no uniform comparison
between the intrinsic and extrinsic geometry of leaves of & in M; we must therefore restrict
attention to neighborhoods in which such comparisons can be made.

Definition 6.8 (Separation Constant). A number € > 0 is a separation constant for F
if there is some L so that for every leaf A of F the inclusion map from ) into its e-
neighborhood N (\) is L-bilipschitz in the respective path metrics. In other words, for all
A, and all p, g € A if there is a path in N.(\) from p to ¢ of length at most 7" then there is
a path in A from p to g of length at most LT.

Lemma 6.9. Every foliation of a compact manifold admits a separation constant.

Proof. In any product chart one may project locally to any leaf by a uniformly Lipschitz
map. Since M may be covered by finitely many product charts, the lemma follows. O

Definition 6.10 (Marker). Let ), for ¢ € [0, 1] be an interval of leaves of F. A marker for
this family of leaves is a map m : [0, 1] x R — M such that

(1) for each p € [0,1] the map m : p x Rt — A, is a (not necessarily parameterized)
geodesic ray;
(2) for each t € R the transversal m([0, 1] x t) has length < ¢/2.

The endpoint of m, denoted e(m) or just e if m is understood, is the interval in E consisting
of the endpoint in each SL (),) of the ray m(p x R™).

Theorem 6.11 (Leaf Pocket Theorem). Let F be taut with hyperbolic leaves. There is a
m1(M)-equivariant collection M of markers so that

(1) endpoints of distinct markers are either disjoint in E or their union is an embedded
interval; and
(2) for all X the intersection of the endpoints of markers with S. () is dense in S (\).

Proof. As in the proof of Proposition 3.15, every minimal set A of F contains a non-simply
connected leaf A\. Let v C A be a simple nontrivial geodesic. If 7 is a sufficiently short
transversal with one endpoint on v then for some choice of orientation, holonomy transport
of 7 around v takes 7 into itself. The transversal 7 sweeps out a rectangle, that glues up
to make a ‘sawblade’ S transverse to J; see Figure 9.

Lift S to the universal cover and straighten it to a geodesic ray leafwise. If 7 is sufficiently
short, an interval of geodesic rays contained in the straightened sawblade is a marker; in
other words every lift of S is a union of markers, whose endpoints in E piece together
to make an embedded interval. Choose one sawblade for each minimal set, with 7 short
enough in each case that distinct sawblades do not intersect, and then take as M the union
of the lifts.

We claim that distinct lifts of sawblades are never asymptotic at infinity in any leaf. Let
A be a leaf, and suppose S, S’ are two lifts of sawblades S and S’ intersecting A (we allow
the possibility that S = S'). Let vy = SN X and 4/ = S’ N A. These are geodesic rays in
A, disjoint because S and S’ are either equal or disjoint. If v and 4’ had a common point
at infinity, S and S’ would accumulate on each other, contrary to the fact that they are
compact and disjoint. This proves the claim, and the first bullet point of the theorem.
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FIGURE 9. A simple closed geodesic (in red) on a leaf bounds a sawblade
(in green) on either side.

Now we prove the second bullet point. Let’s consider a fixed minimal set A and a
sawblade S. Since A is minimal, S intersects every leaf of A. Since A is compact there is a
T so that every point in every leaf of A may be joined by a path of length < T to a point
in the interior of S. It follows that for every leaf X of A that the intersection with lifts of
S is a union of geodesic rays that come within distance 71" of every point. We have already
shown that no two of these rays have common endpoints at infinity; it follows that the set
of endpoints of M in S () consists of at least two points. By compactness of A there is a
least non-negative number 6 strictly less than 27 so that for every X in A, for every p € A
and for every interval I in S!_(\) with visual measure at least 6 as seen from p, there is at
least one endpoint of a sawblade. But every interval in S._()\) has visual measure as close
to 2w as we like as seen from some point in A; it follows that § = 0, so that the endpoints
of M are dense in S. () for every X in any A.

Now, if u € F is arbitrary, and p; is any sequence in yu limiting to some p € S (1), the
balls B;(p;) in u of radius @ project in F to a family of subsets containing a subsequence
whose limit contains some minimal set A. It follows that infinitely many of the B;(p;)
intersect many lifts of a sawblade S for A, and therefore S (1) intersects some endpoint
of some marker in every neighborhood of p. Since p and p are arbitrary, we are done. [J

6.5. Leftmost sections. Once we have defined the universal circle, each point p € S}

will define a section o), of the circle bundle £ — L, by 0,(\) = m\(p). Turning this around,
we shall construct S! . by first constructing (some of) these sections, and then taking a

univ

suitable completion. This construction will take several steps.
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The first step is construct such sections over embedded intervals in L. Suppose we
have constructed a family of markers M as in Theorem 6.11. The endpoints of M form a
collection of disjoint intervals € in the cylinder F|I, transverse to the foliation by circles
and intersecting every circle in a dense subset. Let’s parameterize the interval I by [0, 1]
so that the orientation on I agrees with the orientation on L, and let \; denote the leaves
of I.

Definition 6.12 (Admissible section). A section o : I — E|I is upwards (resp. downwards)
admussible if it satisfies the following two properties:

(1) if 0(0) € e for some € (resp. o(1) € e for some &) then o(I) contains e N E|I; and
(2) o(I) does not cross any element of &.

We claim that among all upwards (resp. downwards) admissible sections with ¢(0) =
p € SL(N\) (resp. o(1) = p € SL ()\1)), there is a unique leftmost section — one that
moves positively (resp. negatively) around the circle as fast as possible as t increases from
0 to 1 (resp. decreases from 1 to 0).

7. ESSENTIAL LAMINATIONS

Definition 7.1. A lamination A in a 3-manifold M is a closed union of surfaces (leaves)
so that M may be covered by coordinate charts (product charts) that intersect the leaves
locally in horizontal disks.

FExample 7.2. A foliation is a lamination. A closed surface is a lamination. A minimal set
in a foliation is a lamination.

Let A C M be a lamination. Define M, to be the metric completion of M — A with
respect to the induced path-metric. Typically M, is not compact, although it has boundary
which maps to boundary leaves of A (those that are locally isolated on at least one side)
under the obvious immersion My — M.

Definition 7.3. A lamination is essential if no leaf is a sphere or a torus bounding a solid
torus, and if M, is irreducible, and admits no compressing disk or monogon.

FExample 7.4. If M is irreducible, any essential surface in M is an essential lamination. If
J is taut, any closed union of leaves of & is an essential lamination.

Example 7.5. Let M fiber over the circle with fiber F' and monodromy ¢. If ¢ is pseudo-
Anosov the stable and unstable laminations of ¢ suspend to essential laminations of M.

The manifold M, is typically non-compact; the ends correspond to regions in the inter-
stices between A where two boundary leaves get very close. These ends may be covered
with product charts in an obvious way giving them the structure of I-bundles over (non-
compact) surfaces, that are partially compactified by finitely many interstitial annuli. The
complement of the I-bundle regions comprises the guts of My, denoted G(A). This is a
compact manifold whose boundary decomposes into interstitial annuli, and compact sub-
surfaces of boundary leaves of A. If A is co-oriented, G(A) is a sutured manifold.
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7.1. Laminar branched surfaces. Recall from Chapter 1, § 6.2 the definition of a
branched surface B, and what it means for B to carry a surface S. There is an obvi-
ous sense of what it means for B to carry a (nowhere dense) lamination A, i.e. we may
isotop A so that the leaves of A run locally nearly parallel to B, as in Chapter 1 Figure 10.
We say that B fully carries A if every sector of B is in the image of A.

Definition 7.6. A branched surface B is

(1) essential if it is incompressible (see Chapter 1, Definition 6.6.) and all complemen-
tary regions are irreducible;

(2) taut if it is co-orientable, if complementary regions are taut sutured manifolds, and
through every sector there is a closed oriented curve positively transverse to B;

(3) laminar if it is essential, and has no trivial bubbles, sink disks or half sink disks.

Every taut branched surface is essential. Every lamination fully carried by an essential
branched surface is essential.

Ezxample 7.7 (Sutured manifold sequence to branched surface). Let 8 be a sequence of
sutured manifold decompositions

S S Sn—l
(Moa%) 4 (Mh%) SC TR (Mm%)

There is a branched surface B(8) built from the union of the S;, co-oriented compatibly
with the sutured structures.

Theorem 7.8 (Li; laminar branched surfaces carry). A laminar branched surface fully
carries an essential lamination.

Corollary 7.9. If B is taut and laminar, then B carries an essential lamination that is a
sublamination of a taut co-orientable foliation.

Ezxample 7.10. Suppose M is irreducible with Hy(M;7Z) nontrivial, and let 8§ be a taut
sutured hierarchy for M. Then B(8) is taut and laminar.

Ezample 7.11 (Dunfield; Foliar Orientations). Let 7 be a triangulation of M. An orienta-
tion on the edges is acyclic if the induced orientation on the edges of each simplex induces a
total ordering of the vertices. For an acyclic orientation each simplex has a unique longest
edge running from the smallest to the largest vertex (in the ordering). An acyclic orienta-
tion has no sink edges if there is no edge which is longest in every simplex it is contained in.
An acyclic orientation is dual to a canonical co-oriented branched surface B, that intersects
each simplex as in Figure ??. The orientation is taut if each vertex is contained in a taut
sutured ball of M — B.

Definition 7.12. An edge orientation is foliar if it is acyclic, taut, and admits no sink edges.

The no sink condition implies that B is laminar, and the taut condition implies that B is
taut. Thus by Corollary 7.9 any 3-manifold that admits a foliar edge orientation contains
a taut co-orientable foliation.
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7.2. Persistently foliar knots.

Definition 7.13. Let M be a closed 3-manifold. Let K C M be a knot, and let M denote
the complement in M of an open solid torus neighborhood of K. A knot K C M is said
to be persistently foliar if for every non-meridian slope on 0Mp there is a taut co-oriented
foliation of M}y intersecting OMy transversely in circles of the given slope.

It follows that if K C M is persistently foliar, every manifold N obtained from M by
non-trivial surgery along K admits a taut co-oriented foliation.
The purpose of this section is to prove the following theorem:

Theorem 7.14 (Delman-Roberts). Every prime, non-torus alternating knot in S is per-
sistently foliar.

Definition 7.15 (Double-diamond taut).
Proposition 7.16. Let S be a sequence of taut sutured manifold decompositions

(M, 0M) & (My,11) S (My, 7)
so that

(1) OM s a torus;
(2) OR is connected and nonempty; and
(3) S is double-diamond taut with respect to ara’ C 0S.

Let o be the essential simple loop on OM that is the union of T and an arc of OR, and
let M'" be the 3-manifold obtained by Dehn filling M along o, so that M is M’ minus a
neighborhood of a knot K C M'. If B(8) has no sink disks disjoint from OM then K is

persistently foliar.

Proof. If S is double-diamond taut, we show how to modify the branched surface so that
the gut region in M’ bounding K is a solid torus with two meridianal sutures. This will
prove the Proposition, since for any nontrivial surgery on K this region becomes taut.

0

8. RFRS AND THE VIRTUAL FIBRATION CONJECTURE
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