
Math 27800 / CS 27800, Winter 2024: Assignment 3 (Solution)
Denis Hirschfeldt, Duarte Maia
Due Friday, February 2nd

Note: This document is meant both as a solution to Homework 3, as well
as a PSA. Notes like this one will occur in the document. If they were to
be removed, this document would be a full score solution to Homework 3. The
notes are supplementary, and serve to point out important details and to explain
common mistakes I found while grading the homework.

I recommend that you take a look at these solutions and compare with your
own. □

Exercise 1.

a. Show that every infinite binary tree has an infinite path.

b. Show that there is a computable infinite binary tree with no computable
path.

c. Let T be a computable infinite binary tree. Show that if we could compute
the Halting Problem, then we could compute an infinite path on T .

d. Show that there is a computable tree T such that, if we could compute an
infinite path on T , then we could compute a completion of ZFC.

Solution (1.a): Since T is infinite, then either it contains infinitely many bi-
nary strings starting with a 0, or it contains infinitely many binary strings
starting with a 1. If the former occurs, set α0 = 0, otherwise set α0 = 1.

Then, iteratively repeat this procedure. (In the following, denote string
concatenation by juxtaposition.) If we have constructed σ = α0 . . . αn such that
infinitely many elements of T are extensions of σ (and so in particular σ ∈ T ),
it must be the case they either infinitely many elements of T extend σ0, in
which case we set αn+1 = 0, or infinitely many extend σ1, in which case we set
αn+1 = 1.

The resulting infinite sequence α is a path on T . ■

Note: The first paragraph is technically unnecessary. □

Note: To be faithful to the original statement, I have written the solution to
1.a. in terms of binary strings, but it would be equally acceptable (and perhaps
more readable) to phrase things in terms of ‘going left or right’ and ‘left and
right branches’. □

Solution (1.b): Define a total computable function f acting on a binary string
σ by the following algorithm:

function f (σ):
for i = 0, . . . , length(σ)

run Φi(i) for length(σ) steps.

if it halted:

1



if σi = Φi(i):
output 0 and halt.

endif

endif

endfor

output 1.

endfunction

We observe that f is indeed total computable, because the algorithm always
computes f(σ) in at most (roughly) length(σ)2 steps. Define T to be the set
whose characteristic function is f , which makes T obviously computable. We
need to verify three things: that T is a tree, that T is infinite, and that no path
on T is computable.

To verify that T is a tree means: if f(σ) = 1, and if τ is a prefix of σ, then
f(τ) = 1. This is true, because the computation for f(τ) will have i ranging
over an even smaller subset, and for each value of i we run the computation
of Φi(i) for even less time, so the algorithm has ‘strictly less opportunity’ to
output 0.

To verify that T is infinite, we explicitly define an infinite path. Define
αn by: If Φi(i) ↓= 0, set αn = 1, otherwise set αn = 0. By construction,
f(α0 . . . αn) = 1 for every n, so α is indeed a path.

Finally, we verify that no such path is computable. Indeed, every computable
path α is equal to Φj for some natural number j. Let N > j be some amount
of steps which suffices to execute Φj(j). We claim that the initial sequence
σ = α0 . . . αN is not in T .

Indeed, if we execute f(σ), when the loop reaches i = j, by definition of
N = length(σ) the instruction Φj(j) will finish executing in time, and its output
will be precisely σj , hence the algorithm will output that no, σ is not in T . Thus,
no computable path α exists in T . ■

Note: A very common error in this exercise was to ‘construct’ the tree by
making an algorithm which would iteratively build the tree ‘up’ as a list of
strings. At face value, this is insufficient: This only shows that the resulting
tree is c.e, not computable.

On that note, I would like to emphasize: If an exercise asks you to construct
a certain computable set, or that a certain set is computable, you should clearly
outline an algorithm for computing the characteristic function of this set! An
algorithm which iteratively builds a list containing its elements, for example, is
not sufficient. □

Solution (1.c): First we show that, with access to an oracle for the Halting
Problem, we can tell whether a subtree of a computable tree is finite or infinite.

Let T be a computable tree, say χ is its characteristic function, and σ ∈
T a node. An essential observation is that the following two statements are
equivalent:

� There are infinitely many strings in T extending σ,

2



� There are strings of arbitrarily large length in T extending σ. ■

(Sketch: The first implies the second because for every finite N there are
finitely many strings of length ≤ N . The second implies the first because for
any finite collection of strings there is a common bound to their length.)

Therefore, the following algorithm will loop infinitely if there are infinitely
many nodes below σ, and halt in finite time otherwise:

function g(σ):
for n = length(σ), length(σ) + 1, . . .:

for τ in 0,1-strings of length n:
if τ extends σ and χ(τ) = 1:

goto [nextiteration]

endif

endfor

halt execution and return 0

[nextiteration]

endfor

endfunction

We can apply the s-m-n Theorem (we may need to add a dummy second
argument to g) to obtain a computable function s such that ϕs(σ)(s(σ)) = g(σ),
and so s(σ) is in the Halting Problem iff there are infinitely many nodes below
σ in T .

Thus, the following algorithm, which makes use of an oracle for the Halting
Problem (which we call hp), will print out an infinite binary sequence of zeros
and ones, which is itself an infinite path on T . This is achieved by encoding as
an algorithm the proof of 1.a, and so the same argument therein proves that the
output is an infinite path in T . In the sequence, we use juxtaposition to mean
string concatenation, so e.g. σ1 means ‘the binary string σ, plus a 1 at the end’.

begin procedure X:

σ ← (empty string)

while True:

if hp(s(σ0)): // finitely many nodes on the left

σ ← σ1
print(1)

else:

σ ← σ0
print(0)

endif

endwhile

end procedure.

We can turn this into a bona fide path α (i.e. a function N→ {0, 1}) by the
following method:

function α(n):
run procedure X until n characters have been printed.

3



(this will happen after n iterations of the loop)

output this character.

endfunction

Solution (1.d): We construct a tree using an algorithm that is very similar to
the solution of 1.b.

We take for granted, by the Curch-Turing thesis, that we have an effective
enumeration of all formulas in the language of set theory, say s0, s1, etc. and
likewise an effective enumeration of all finite sequences of such formulas, say p0,
p1, etc.

Let σ be a finite binary string. We identify it with the extension of ZFC
obtained by adding to it the axioms: si for i < length(σ) with σi = 1, and ¬si
for i < length(σ) with σi = 0. By abuse of notation, let us call this extension
ZFC+ σ.

By the Church-Turing thesis, there is a computable function c(i, σ) which
checks whether pi is a proof of ZFC+ σ ⊢ ∃x(x ̸= x).

That said, define:

function f (σ):
compute c(0, σ), ..., c(length(σ), σ)
if a contradiction is found:

output 0

else:

output 1

endif

endfunction

It is clear that f is total and is the characteristic function of some set of
binary strings T . We show that T is a tree (which is evidently computable),
and that paths in T are in correspondence with completions of ZFC.

To show that T is a tree: Suppose that f(σ) = 1, and that τ is a prefix of
σ such that f(τ) = 0. Then, there is some i < length(τ) such that c(i, τ) = 1.
However, by definition of c we easily obtain that c(i, σ) = 1. But since i <
length(τ) ≤ length(σ), this contradicts the assumption that f(σ) = 1.

Now, let α be an infinite binary string. To it, we may correspond an exten-
sion of ZFC, let us call it ZFC+α, defined by

⋃
n ZFC+(α0 . . . αn). Evidently,

ZFC+α is always complete, and every complete consistent extension is of this
form, so the question is for which α is ZFC+ α consistent.

First, suppose that ZFC + α is consistent. Then, for every finite initial
segment σ of α we have ZFC + σ is consistent, and by definition of f it is
evident that f(σ) = 1. Thus, α is a path on T .

Finally, suppose that ZFC+ α is inconsistent. Then, by compactness there
is a proof pn of a contradiction that uses a finite fragment of ZFC + α, say
ZFC + α0 . . . αm. Let N = max(n,m). Then, by definition of f it is easy to
verify that f(α0 . . . αm) = 0, and consequently α is not a path on T .

4



In conclusion, we have built a computable tree T whose paths are in one-
to-one effective correspondence with completions of ZFC, and so given such a
path we could construct a completion of ZFC. ■

Note: Notice that in the second paragraph, we introduced an effective enu-
meration of the formulas and of the proofs, by resorting to the Church-Turing
thesis. Some students used instead an argument like the following: There are
countably many symbols, and a formula is a finite sequence of symbols, so there
are countably many formulas, and we let s0, s1, etc. be an enumeration of the
formulas. This argument is invalid.

When doing computability theory, cardinality is rarely a valid argument to
use, because knowing that there is an enumeration of a set does not let us use
that enumeration in an algorithm; otherwise, it would be very easy to solve the
halting problem (its complement is countable, after all!)

Be careful to distinguish an enumeration from an ‘effective enumeration’, or
equivalently a computable enumeration. □

Note: As written, problem 1.d is trivially true. Any finite tree T will satisfy
what T asks: if we could compute an infinite path on T , we vacuously could
compute a completion of ZFC. This is would obviously not be accepted as a
solution, though to my surprise no one even bothered trying.

A slightly closer to intended interpretation of the problem might be to de-
mand that T is infinite, at least assuming that ZFC is consistent. Since this
was not asked for in the problem, there was no penalization for failing to do
so. The above solution proves something slightly stronger, which is that there
is a ‘nice’ correspondence between consistent completions of ZFC and paths in
T . From this, we obtain that if ZFC is consistent, there is a completion of it,
which furnishes a path in T and hence T is infinite. □

Note: The reader will have noticed similarities between problem 1.b and prob-
lem 1.d. This is no coincidence. In both cases, the problem would be much
easier to solve if the trees were requested to be co-c.e. (i.e. if N \ T is requested
to be c.e.). Such trees are closely related to something called Π0

1 classes, and a
study of them may be found in any modern book on computability theory. The
solutions to problems 1.b and 1.d are both applications of a general trick, which
allows us to turn any co-c.e. tree T into a slightly larger computable tree T ′

with no more infinite paths than T (and so exactly the same infinite paths). □

Exercise 2. Show that there are computably inseparable c.e. sets A and B.

Solution: Following the hint, set

A = {n ∈ N | ϕn(n) ↓= 0 },
B = {n ∈ N | ϕn(n) ↓> 0 }.

(1)

Both A and B are evidently c.e., as A (resp. B) is the domain of the
following computable function: Given n ∈ N, compute ϕn(n), and if it is zero
(resp. nonzero), return 0, otherwise loop forever.

5



Now, suppose for the sake of contradiction that there is a computable set
C which separates A and B as in the problem statement. Let ϕc be the char-
acteristic function of C. Note that ϕc is a total function, and hence ϕc(c) is
well-defined.

If ϕc(c) = 0, then c ∈ A but c ̸∈ C, which contradicts the assumption that
A ⊆ C.

If ϕc(c) = 1, then c ∈ B but c ∈ C, which contradicts the assumption that
C ∩B = ∅.

In either case we have a contradiction, and thus C may not exist. Hence, A
and B are computably inseparable. ■

Exercise 3. Let A and B be c.e. sets. For each of the following sets, must the
set be c.e.?: A ∪B, A ∩B, A \B.

Solution: Since A and B are c.e., each of them is the domain of some partial
computable function, say resp. ϕa and ϕb.

� (A ∪ B is c.e.) Consider the following algorithm: Given x, execute the
Turing Machines for ϕa(x) and ϕb(x) in parallel. If either of them ever
halts, halt execution and output 0.

The resulting partial computable function will evidently have domain A∪
B.

� (A∩B is c.e.) Consider the following algorithm: Given x, compute ϕa(x),
and once the execution is done, output ϕb(x).

The resulting partial computable function will evidently have domain A∩
B.

� (A\B may not be c.e.) Consider A = N and let B be the Halting Problem.
Both are known to be c.e., but B is known not to be computable. We know
from class that if both B and its complement are c.e. then B is computable,
and so we obtain that N \B = A \B is not c.e. in this scenario. ■

Note: This exercise is an example of a scenario where knowing the two different
facets of the definition of c.e. comes in useful. Indeed, to show that A ∪ B is
c.e. it is actually quite natural to consider the characterization of c.e. via ‘image
of a total function’ or ‘there is an algorithm which prints out its elements’; for
example, if there is an algorithm which prints out all the elements of A and one
which prints out the elements of B, we might consider running both algorithms
in parallel and outputting the results of both to the same screen.

This solution is perfectly reasonable and natural, but requires a little bit of
care in handling the (trivial) cases where either A or B is empty, which is why
I chose to use the ‘domain of a partial computable function’ characterization
instead.

On the other hand, to show that A ∩B is c.e., the domain characterization
leads to an extremely simple and natural solution, while the ‘algorithm that

6



prints out all elements’ characterization leads to a much more convoluted solu-
tion. It’s still doable, mind you: If A = im(f) and B = im(g), one may iterate
over the pairs i, j ∈ N2, check whether f(i) = g(j), and print out the result if
this is the case. But the other solution is much cleaner. □

7


