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Algorithmic randomness and Bayesian convergence
Overview

Overview

Much recent work in algorithmic randomness has concerned
characterizations of randomness notions in terms of e�ectivizations of
almost-everywhere convergence theorems in analysis and probability
theory.

In our project, we study from this perspective results that are part of
the basic toolkit of Bayesian epistemologists.

I will focus on certain martingale convergence theorems that form one
of the cornerstones of Bayesian epistemology and that fall under the
general umbrella of “Bayesian convergence-to-the-truth results”.

General lesson: for Bayesian agents with computable priors, a certain
type of inductive success is attainable exactly on the algorithmically
random data streams.
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The washing out of priors

In philosophy, Bayesianism is a family of views under which
probability and degrees of belief become aligned.

Depending on the purpose at hand, this might make prior probability
assignments look insu�ciently objective.

Convergence-to-the-truth results are supposed to address this:

For the Bayesian, concerned as he is to deal with the real world
of ordinary and scientific experience, the existence of a system-
atic method for reaching agreement is important. [...] The well-
designed experiment is one that will swamp divergent prior
distributions with the clarity and sharpness of its results, and
thereby render insignificant the diversity of prior opinion.

[Suppes (1966), p. 204.]
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The basic set-up

We work with probability spaces of the form ( N ( N) ).

Let : N ! R be a random variable, and let E [ ] denote the
expectation of with respect to . Then, is integrable (or in ) if
E [| |] 1.

For each , let F denote the sub- -algebra of ( N) generated by the
clopens [ ] associated to strings N of length .

Intuitively, the filtration {F } N represents the possible bodies of
evidence available at each stage of the learning process.
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Conditional expectation

E [ | F ]( ) is the expected value of given knowledge in F .

Informally, E [ | F ]( ) is the best estimate of ’s value on input
N after having observed the first digits of .

We work with the following version of the conditional expectation:

E [ | F ]( ) =

8
<

:
([ � ])

R
[ � ] if ([ � ])

otherwise.

{E [ | F ]} N is a martingale:

E [E [ | F + ] | F ] = E [ | F ]

by the tower property of conditional expectations.
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Conditional expectation and martingales

Again, we work with the following version of the conditional
expectation:

E [ | F ]( ) =

8
<

:
([ � ])

R
[ � ] if ([ � ])

otherwise.

Define : N ! R by defining, for of length :

( ) = E [ | F ]( _ ) =

8
<

:
([ ])

R
[ ] if ([ ])

otherwise.

Then, this satisfies the following, which, in computability theory, we
usually take to be the defining property of a martingale:

( ) ([ ]) = ( ) ([ ]) + ( ) ([ ])
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Conditional probability

Again, we work with the following version of the conditional
expectation:

E [ | F ]( ) =

8
<

:
([ � ])

R
[ � ] if ([ � ])

otherwise.

Conditional probabilities are of course a special case.

When is the indicator function of a measurable event ,

E [ | F ]( ) =

8
<

:

R
[ � ]

([ � ]) = ( [ � ])
([ � ]) if ([ � ])

otherwise.

And ( [ � ])
([ � ]) = ( | [ � ]) is simply the probability of event ,

conditional on the first digits of .
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Lévy’s Upward Martingale Convergence Theorem

Here is a classical theorem of Lévy on martingale convergence (stated
in the context of probability spaces of the form ( N ( N) )):

Theorem (Lévy’s Upward Theorem, Lévy [1937])
Let : N ! R be integrable, relative to ( N ( N) ). Then,

!1
E [ | F ] =

-almost everywhere, and

E [ | F ]
( )

����!
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Epistemic interpretation of Lévy’s Upward Theorem

Sequences in N are data streams.

The random variable represents a quantity that a Bayesian agent
with prior is trying to estimate—a quantity whose value depends on
the observed data stream.

When is the indicator function of a measurable event, then the
quantity to be estimated is the truth value of that event.

The conditional expectation E [ | F ]( ) represents the Bayesian
agent’s beliefs about the value of at the -th stage of the learning
process, after observations have been made.

From this perspective, Lévy’s Upward Theorem establishes that, with
probability one (relative to the agent’s prior), the agent’s beliefs
converge to the truth (i.e., the correct value of ) with increasing
evidence.
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Computable probability measures

In e�ectivizing Lévy’s Upward Theorem, we work with arbitrary
computable probability measures .

For some purposes, distinct computable probability measures do not
di�er much.

For instance, Kautz showed that Turing degrees of MLR’s are not
di�erent among computable atomless measures [Kautz, 1991,
Corollary IV.3.18, p. 69]. But our questions here are about elements
of Cantor space, rather than their Turing degree.

And, of course, an extension of the Borel Isomorphism Theorem says
that any two uncountable atomless Borel probability spaces are Borel
isomorphic [Kechris, 1995, p. 116]. But the Borel Isomorphism
Theorem is non-e�ective (e.g., not all uncountable -classes have
computable members).
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Computable probability measures

Most of what we do works for all computable probability measures.

This is important for our intended philosophical applications, since it
is natural to interpret computable probability measures as the priors
(the initial degrees of belief) of computationally limited Bayesian
agents.

Sometimes, in what follows, we restrict to atomless computable
probability measures.

We will end with an example where the only proof we have is for all
computable Bernoulli measures.
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General shape of our results

Theorem
Let N and a computable probability measure. The following
are equivalent:

1 is -random;
2 for all ,

!1
E [ | F ]( ) = ( )
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Epistemic interpretation

For computable Bayesian agents (i.e., agents with computable priors),
beliefs, in the form of the agent’s best estimates of the true value of a
random variable, align with the truth in the limit, under appropriate
algorithmic randomness assumptions.

Di�erent e�ectivity constraints on random variables track how
di�cult the values of these random variables are to approximate.

For natural classes of e�ective random variables, we can pinpoint the
collection of data streams that guarantee convergence to the truth for
all random variables in that class.

In each case, the collection of truth-conducive data streams coincides
with a specific algorithmic randomness notion.
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-computable functions

Definition ( -computable function)
Let be a computable probability measure.

1 A sequence { } N of measurable functions converges fast in
( ) to a measurable function if - ( )

- for all
N. We write that ! fast in ( ).

2 A function : N ! R is ( )-computable if there is a
computable sequence { } N of rational-valued step functions
such that ! fast in ( ). Such a sequence is said to be a
witness to the ( )-computability of .
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Schnorr randomness and Lévy’s Upward Theorem

Theorem
Let N and a computable probability measure. The following
are equivalent:

1 is Schnorr -random;
2 for all ( )-computable functions : N ! R with witness

{ } N,
lim
!1

( ) exists and is finite,

and
lim
!1

E [ | F ]( ) = lim
!1

( ).
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Integral tests for Schnorr randomness

Let be a computable probability measure. An integral test for
Schnorr -randomness is a non-negative lower semi-computable
function : N ! R with

R
N computable.

Theorem (Miyabe [2013])
Let N and a computable probability measure. The following
are equivalent:

1 is Schnorr -random;
2 ( ) 1 for all integral tests for Schnorr -randomness.
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Schnorr randomness and Lévy’s Upward Theorem

Theorem
Let N and a computable probability measure. The following
are equivalent:

1 is Schnorr -random;
2 for all integral tests for Schnorr -randomness : N ! R,

lim
!1

E [ | F ]( ) = ( ) 1.
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Relation to Pathak, Rojas, and Simpson’s work

Our result is the Cantor-space analogue of Pathak et al.’s [2014] char-
acterization of Schnorr randomness in terms of the Lebesgue Di�eren-
tiation Theorem in Euclidean space for the uniform measure:

Theorem (Pathak et al. [2014])
Let [ , ] . The following are equivalent, where is the Lebesgue
measure on [ , ] :

1 is Schnorr -random;
2 for all ( )-computable : [ , ] ! R with witness { } N,

lim
!1

( ) exists and is finite,

and
lim
!

R
( )

( )
= lim

!1
( ).
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Relation to Rute’s work

Theorem (Rute [2012])
Let N and a computable probability measure. The following
are equivalent:

1 is Schnorr -random;
2 for all uniformly ( )-computable martingales which

converge in ( ) to an -computable function, lim
!1

( )

converges.

In motivating his work, Rute pointed out that “algorithmic randomness
is more concerned with success than convergence.”

We focus not merely on convergence per se, but on convergence to the
correct value, since we need this information for our intended philo-
sophical applications.
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Relation to Rute’s work

Theorem (Rute [2012])
Let N and a computable probability measure. The following
are equivalent:

1 is Schnorr -random;
2 for all non-negative ( )-computable martingales with

respect to the filtration F such that ! a.e., lim
!1

( ) = .

But if ! a.e., then there is no computable ( )-function such
that ( ) = E [ | F ]( ). (This is because the hypothesis !
a.e. on the martingale forces its measure representation to be
mutually singular with respect to the measure).
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Density randomness

Definition (Density randomness)
Let be a computable measure. A sequence N is density

-random if and only if it is Martin-Löf -random, as well as a dyadic
density-one point relative to : i.e.,

lim inf
!1

R
[ � ]

([ � ])
=

for all classes such that .
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Weakly -computable functions

Definition (Weakly -computable function)
Let be a computable probability measure. Then, a function
: N ! R is weakly ( )-computable if there is a computable

sequence { } N of rational-valued step functions such that

I ( )
����! and

I P
N + - ( ) 1 (i.e., the sequence { } N has

bounded ( )-variation.
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Density randomness and Lévy’s Upward Theorem

Theorem
Let N and a computable, strictly positive and atomless
probability measure. The following are equivalent:

1 is density -random;
2 for all weakly ( )-computable functions : N ! R with

witness { } N, we have that

lim
!1

( ) exists and is finite,

and
lim
!1

E [ | F ]( ) = lim
!1

( ).
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Integral tests for Martin-Löf randomness

Let be a computable probability measure. An integral test for
Martin-Löf -randomness is a non-negative lower semi-computable
function : N ! R with

R
N 1.

Theorem (Levin [1976])
Let N and a computable probability measure. The following
are equivalent:

1 is Martin-Löf -random;
2 ( ) 1 for all integral tests for Martin-Löf -randomness.
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Density randomness and Lévy’s Upward Theorem

Theorem
Let N and a computable, strictly positive and atomless
probability measure. The following are equivalent:

1 is density -random;
2 for all integral tests for Martin-Löf -randomness : N ! R,

lim
!1

E [ | F ]( ) = ( ) 1.
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Relation to Miyabe, Nies, and Zhang’s work

Theorem (Miyabe et al. [2016])
Let [ , ]. The following are equivalent, where is the Lebesgue
measure on [ , ]:

1 is density -random;
2 for all integral tests for Martin-Löf -randomness : [ , ] ! R,

lim
!

R
( )

( )
= ( ).
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Gaifman-Snir randomness

The first authors to suggest a bridge between randomness and
Bayesian epistemology were Gaifman and Snir [1982], who focused on
convergence to the truth in the context of indicator functions of
measurable events.

Definition (Gaifman-Snir randomness)
Let N and a computable probability measure. Then,
I is Gaifman-Snir -random if ([ � ]) for all N and

lim
!1

E [ | F ]( ) = ( ) for all classes ;

I is computably Gaifman-Snir -random if ([ � ]) for all
N and lim

!1
E [ | F ]( ) = ( ) for all classes with

( ) computable;
I is weakly Gaifman-Snir -random if ([ � ]) for all

N and lim
!1

E [ | F ]( ) = ( ) for all classes .
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Gaifman-Snir randomness

DR //

✏✏

D1
OO

✏✏

MLR

✏✏

GSR

✏✏

CR

✏✏

SR //

✏✏

CGSR

rr

✏✏

))

Bernoulli

KR // WGSR
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KR CGSR for computable Bernoulli measures

Proposition
Let be a computable Bernoulli measure. Then, KR CGSR .
Proof.
Suppose that KR and that is with ( ) computable. We
want to show that lim

!1
E [ | F ]( ) = ( ).

This is trivial if , so suppose that / . We want to show that
lim
!1

E [ | F ]( ) = .

Suppose not. Then there is a rational such that there are
infinitely many with E [ | F ]( ) .

Since ( ) is computable, there is a computable function : N ! N

with ( ) and E [ | F ( )]( ) .
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KR CGSR for computable Bernoulli measures

Let be the class of the N such that / and, for all
N, E [ | F ( )]( ) .

If ( ) = , then we would have that , being in KR , is not in it.
Hence, ( ) .

Now we verify that the usual proof that -classes of positive
measure contain tails of all MLR’s extends to all Bernoulli measures.

Since ( ) , its complement is a class with ( ) .

Let = { , , ...} N be a prefix-free set such that = [ ].

Define the following sequence of sets of strings:
I := and,
I given , + := { N : and }.
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KR CGSR for computable Bernoulli measures

For each , let = [ ]. Then, is a sequence of uniformly
classes.

Moreover, ( ) = ( ) and, for all ,

( ) = ([ ])

=
X

- ,
([ ])

=
X

- ,
([ ]) ([ ] | [ ])

X

- ,
([ ]) ([ ])

= ([ - ]) ([ ])

= ([ ]) +

31 / 35



Algorithmic randomness and Bayesian convergence
Algorithmic randomness and Bayesian convergence to the truth

KR CGSR for computable Bernoulli measures

Let a rational with ([ ]) . For each , let be the least
such that + - and let = .

Since can be found computably in , is a sequence of uniformly
classes. Moreover, ( ) - . Hence, is a Martin-Löf -test.

Let MLR and suppose that, for all N and N, if
= , then = [ ]. Then, for all , [ ] = .

Hence, N . But this contradicts the assumption that
MLR . So, there must be some N and N with =

and .

Since MLR , so is . Hence, SR .

By the definition of , / , but it is not the case that
lim
!1

E [ | F ]( ) = . And this contradicts the fact that
SR CGSR .
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Gaifman-Snir randomness, genericity, and Bayesian
immodesty

DR //

✏✏

D1
OO

✏✏

MLR

✏✏

GSR

✏✏

CR

✏✏

SR //

✏✏

CGSR

rr

✏✏

))

Bernoulli

KR // WGSR
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Bayesian epistemology from a computability-theoretic
perspective

Bayesian convergence-to-the-truth results are not the only results
relevant to Bayesian epistemology that can be studied from the
perspective of algorithmic randomness.

As part of our project, we are now focusing on Bayesian
merging-of-opinions results, which are standardly taken to establish
that distinct Bayesian agents with su�ciently compatible priors are
guaranteed to reach inter-subjective agreement with probability one.

The overall goal is two-fold:
I develop a computability-theoretic approach to Bayesian

epistemology;
I study the notions of randomness/genericity that emerge from

natural e�ectivizations of convergence results relevant to
Bayesian epistemology.
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