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▶ There is a ”purely structural” strengthening of Vaught’s
conjecture named the ω-Vaught’s conjecture (ω-VC).

▶ Linear orders satisfy the ω-Vaught’s conjecture.
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Summary of the talk

1. Vaught’s conjecture and the Morley analysis

2. ω-VC
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Vaught’s Conjecture

Conjecture: [Vaught 61] Given a first order theory over a
countable vocabulary, the number of countable models of the
theory is either countable or continuum.

Conjecture (infinitary version): [Vaught 61] Given a formula
φ ∈ Lω1,ω over a countable vocabulary, the number of countable
models of φ is either countable or continuum.

▶ Lω1,ω is infinitary logic; it extends first order logic by allowing
countable conjunctions and disjunctions.

▶ Under CH the conjecture trivially holds. You can replace
”continuum” with ”perfectly many” to get a statement
independent of set theoretic considerations.
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Selected Variations on Vaught’s Conjecture

Conjecture: [Martin] Given a complete, consistent first order
theory T over a countable vocabulary, add a predicate for every
type to create T1. If T has fewer than 2ℵ0 many models, then any
model of T is ℵ0−categorical in its T1 theory.

Conjecture: [Becker-Kechris] For any continuous action of a
Polish group on a Polish space, there are either countable or
continuum many orbits.

Theorem: [Becker] One of the following holds for any complete,
left invariant Polish G -space X :

▶ X has perfectly many orbits.

▶ Every orbit of X is Π0
ω.
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Complexity of Lω1,ω formulas

▶ φ ∈ Lω1,ω is in Σin
0 = Πin

0 if it is quantifier free and has no
infinitary disjunctions or conjunctions.

▶ For α ∈ ω1, φ is Σin
α if φ =

∨∨
i ∃(x̄)ψi (x̄) for ψi ∈ Πin

β with
β < α.

▶ For α ∈ ω1, φ is Πin
α if φ =

∧∧
i ∀(x̄)ψi (x̄) for ψi ∈ Σin

β with
β < α.
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Complexity of Lω1,ω formulas

▶ For two models M,N we say M ≤α N if
Πin
α − Th(M) ⊆ Πin

α − Th(N).

▶ Note that M ≥α N if and only if Σin
α −Th(M) ⊆ Σin

α −Th(N).

▶ We put M ≡α N if both of the above hold.

Fact: The ≡α are Borel equivalence relations.
Theorem: [Silver 80] Borel equivalence relations have either
countable or continuum many equivalence classes.
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Scott rank

Theorem: [Scott] For every countable structure M there is a
sentence φ ∈ Lω1,ω such that N ∼= M ⇐⇒ N |= φ.

Corollary: On countable structures,

∼= =
⋂
α∈ω1

≡α

Definition: A φ as in the theorem statement is called a Scott
sentence.
Definition: [Montalbán] The (parametrized) Scott rank of M is
the least α ∈ ω1 such that M has a Σin

α+2 Scott sentence. We
write SR(M) = α.
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The Morley analysis

Theorem: [Morley] Given a formula φ ∈ Lω1,ω over a countable
vocabulary, the number of countable models of φ is either
countable, continuum, or ℵ1.

Proof (Sketch): Let
SS(φ) := {α ∈ ω1|∃M, M |= φ ∧ SR(M) = α} and consider cases:

1. For some β< ω1 there are conintuum many ≡β classes.

2. SS(φ) is bounded below some β< ω1. In this case, ∼= is ≡β+2

so is Borel. If we are not in case 1, there are only ℵ0 many
models.

3. SS(φ) is cofinal in ω1 and for all β < ω1 there are countably
many ≡β classes.This means there are ℵ1 many models.
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The Vaught ordinal

Given a φ ∈ Lω1,ω we define the Vaught ordinal, written vo(φ) as
the least β such that either

▶ there are continuum many models of φ up to ≡β equivalence,

▶ or there are only countably many models of φ and they all
have Scott rank less than β.

Vaught’s conjecture holds if and only if vo(φ) is well defined for all
Lω1,ω sentences φ.
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Vaught ordinal examples

▶ Linear orders: a Πin
1 sentence with vo(φ) = 3 as there are

uncountably many ≡3 classes.

▶ If ψ ∈ Σin
α+2 is a Scott sentence then vo(ψ) = α+ 1.

▶ Both Q-vector spaces and algebraically closed fields: a Πin
2

sentence with vo(χ) = 3 as they always have SR(M) < 3.

▶ Boolean algebras: a Πin
2 sentence with vo(θ) = ω as there are

uncountably many ≡ω classes but only countably many ≡n

classes for n ∈ ω.
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The ω-Vaught’s conjecture

Conjecture: Given a formula φ ∈ Πin
α over a countable vocabulary,

vo(φ) ≤ α+ ω.

▶ Because of the example of Boolean algebras, this is the best
possible general bound.

▶ It is similar to Martin’s conjecture in that we are allowing and
additional ω many quantifiers to classify models.

▶ It is different in that it is essentially infinitary and more
precisely tied to the Morley analysis and computable structure
theory.

▶ It also gives more precise information in the ”continuum case”
about where the continuum is witnessed.

▶ It is unknown if one implies the other.



The ω-Vaught’s conjecture

Conjecture: Given a formula φ ∈ Πin
α over a countable vocabulary,

vo(φ) ≤ α+ ω.

▶ Because of the example of Boolean algebras, this is the best
possible general bound.

▶ It is similar to Martin’s conjecture in that we are allowing and
additional ω many quantifiers to classify models.

▶ It is different in that it is essentially infinitary and more
precisely tied to the Morley analysis and computable structure
theory.

▶ It also gives more precise information in the ”continuum case”
about where the continuum is witnessed.

▶ It is unknown if one implies the other.



The ω-Vaught’s conjecture

Conjecture: Given a formula φ ∈ Πin
α over a countable vocabulary,

vo(φ) ≤ α+ ω.

▶ Because of the example of Boolean algebras, this is the best
possible general bound.

▶ It is similar to Martin’s conjecture in that we are allowing and
additional ω many quantifiers to classify models.

▶ It is different in that it is essentially infinitary and more
precisely tied to the Morley analysis and computable structure
theory.

▶ It also gives more precise information in the ”continuum case”
about where the continuum is witnessed.

▶ It is unknown if one implies the other.



The ω-Vaught’s conjecture

Conjecture: Given a formula φ ∈ Πin
α over a countable vocabulary,

vo(φ) ≤ α+ ω.

▶ Because of the example of Boolean algebras, this is the best
possible general bound.

▶ It is similar to Martin’s conjecture in that we are allowing and
additional ω many quantifiers to classify models.

▶ It is different in that it is essentially infinitary and more
precisely tied to the Morley analysis and computable structure
theory.

▶ It also gives more precise information in the ”continuum case”
about where the continuum is witnessed.

▶ It is unknown if one implies the other.



The ω-Vaught’s conjecture

Conjecture: Given a formula φ ∈ Πin
α over a countable vocabulary,

vo(φ) ≤ α+ ω.

▶ Because of the example of Boolean algebras, this is the best
possible general bound.

▶ It is similar to Martin’s conjecture in that we are allowing and
additional ω many quantifiers to classify models.

▶ It is different in that it is essentially infinitary and more
precisely tied to the Morley analysis and computable structure
theory.

▶ It also gives more precise information in the ”continuum case”
about where the continuum is witnessed.

▶ It is unknown if one implies the other.



The ω-Vaught’s conjecture

Conjecture: Given a formula φ ∈ Πin
α over a countable vocabulary,

vo(φ) ≤ α+ ω.

▶ Because of the example of Boolean algebras, this is the best
possible general bound.

▶ It is similar to Martin’s conjecture in that we are allowing and
additional ω many quantifiers to classify models.

▶ It is different in that it is essentially infinitary and more
precisely tied to the Morley analysis and computable structure
theory.

▶ It also gives more precise information in the ”continuum case”
about where the continuum is witnessed.

▶ It is unknown if one implies the other.



Linear orders

Theorem: [Steel 78] For any φ ∈ Lω1,ω over {≤} that implies all
models are linear orders,

vo(φ) ≤ ωφ
1 .

Note that ωφ
1

▶ is really, really big,

▶ is dependant on more than the complexity of the formula φ,

▶ uses notions from higher recursion theory.
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Linear orders continued

Steel: vo(φ) ≤ ωφ
1 .

Where does he need such a large ordinal?

Definition: For any α ∈ ω1 and x , y ∈ L a countable linear order,
say

x ∼α y ⇐⇒ SR((x , y)L) < α.

Lemma: If SR(L) ≥ ωφ
1 , then L/ ∼ωφ

1
is a dense linear order.

Proof uses Σ1
1 bounding; is not true at non-admissible ordinals (e.g

your ordering is itself an ordinal).

A better bound requires a finer combinatorial analysis of L/ ∼α for
smaller α.
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The Vaught ordinal for linear orders

Over time we preformed this analysis for φ ∈ Πin
α whose models are

linear orders:

▶ Version 1: vo(φ) ≤ (α+ ω)ω

▶ Version 2: vo(φ) ≤ α · ω2 + ω + 5

▶ Version 3: vo(φ) ≤ (α+ ω) · 5 + ω · 5
▶ Version 4: vo(φ) ≤ α+ ω · 3
▶ Version 5: vo(φ) ≤ α+ ω + 25

▶ Final version: vo(φ) ≤ α+ ω

Theorem:[G., Montalbán] For any φ ∈ Lω1,ω over {≤} that
implies all models are linear orders, φ satisfies ω-VC.
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The main lemma

Definition: A structure M is (β, β + ω)-small if for all n ∈ ω

|{B|B ≡β A}/ ≡β+n | ≤ ℵ0.

Lemma: The following are equivalent for φ ∈ Πin
α :

1. Every ψ that implies φ satisfies ω − VC.

2. For every β ≥ α and (β, β + ω)-small A with A |= φ and
SR(A) ≥ β + ω, there is a B ≡β A with SR(B) ≥ β + ω and
B ̸≡β+ω A.

Proof idea for (2) implies (1): Assume there is some
(α, α+ ω)-small model of φ with a large Scott rank. Build a
perfect binary tree of ≡α structures that are not ≡α+ω at a given
height. The set of limit structures at each path witness distinct
≡α+ω classes.
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height. The set of limit structures at each path witness distinct
≡α+ω classes.
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What this gets us

The objective: Given a (β, β + ω)-small A with SR(A) ≥ β + ω,
explore the space of B that have B ≡β A. Try to find a
transformation of A into a B that satisfies the two competing
goals:

1. The Scott rank of B stays at at least β + ω,

2. B disagrees with A on some Πin
β+n formula.



The replacement lemma

Lemma: There is a non-decreasing function f : ω → ω which,
given an (α, α+ ω)-small structure L with SR(L) ≥ α+ n,
guarantees that there is a structure P with

L ≡α+n P and α+ n ≤ SR(P) ≤ α+ f (n).

Idea: Apply this lemma to intervals inside of a linear ordering to
control the Scott ranks of end segments.
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A splitting formula

Lemma: For a fixed vocabulary, given any ordinal α, there is a
Πin
2α+3 sentence ρα such that

A |= ρα ⇐⇒ SR(A) ≥ α.

We use this idea to define ψ≤,i := ∃xSR(L≤x) = α+ i of quantifier
rank less than α+ ω and an analogous ψ≥,i .

In nearly all cases considered we construct models that disagree on
some Boolean combination of the ψ≤,i and ψ≥,i .
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Fine Scott rank analysis of linear orderings

To apply the replacement lemmas effectively we need to
understand how the Scott rank of suborders relate to the Scott
rank of the orders they comprise.

Lemma: For any linear orderings A,B

SR(A+ B) ≤ max(SR(A), SR(B)) + 4.

Lemma: For any linear ordering A with SR(A≤x) ≤ β for all
x ∈ A,

SR(A) ≤ β + 4.



Fine Scott rank analysis of linear orderings

To apply the replacement lemmas effectively we need to
understand how the Scott rank of suborders relate to the Scott
rank of the orders they comprise.
Lemma: For any linear orderings A,B

SR(A+ B) ≤ max(SR(A), SR(B)) + 4.

Lemma: For any linear ordering A with SR(A≤x) ≤ β for all
x ∈ A,

SR(A) ≤ β + 4.



Fine Scott rank analysis of linear orderings

To apply the replacement lemmas effectively we need to
understand how the Scott rank of suborders relate to the Scott
rank of the orders they comprise.
Lemma: For any linear orderings A,B

SR(A+ B) ≤ max(SR(A), SR(B)) + 4.

Lemma: For any linear ordering A with SR(A≤x) ≤ β for all
x ∈ A,

SR(A) ≤ β + 4.



Combinatorial fun

The rest of the proof is purely about the combinatorics of linear
orderings.

One big idea: Steel used that L/ ∼ωφ
1
is a dense linear order. We

can reduce to the case that for some n, L/ ∼α+n with a suitable
application of the replacement lemma.

While ordinals are descriptively complicated they are actually quite
combinatorially simple; this is quite an important reduction.
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The main takeaways

▶ The new result involves only relatively low-level definability
and structural information about orderings.

▶ The use of higher recursion theory or descriptive set theory is
not needed to prove VC for linear orders.

▶ A purely structural proof of Vaught’s conjecture for other
structures may be possible via ω-VC.

▶ Vaught’s conjecture is only the beginning.

▶ If you think this is a straw-man, please tear it down!
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Thank you!
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