Minimal covers in the Weihrauch degrees

Steffen Lempp

University of Wisconsin-Madison

February 29, 2024

(joint work with J. Miller, Pauly, M. Soskova and Valenti)

A mathematical problem can be viewed as a statement of the form

 $\forall X (\varphi(X) \to \exists Y \psi(X, Y)),$

where φ and ψ are formulas in the (two-sorted) language $\mathcal{L} = \{+, \cdot, <, 0, 1, \in\} \text{ using only number quantifiers.}$

Here, X is called an *instance*, and Y a *solution* of the problem.

Two standard examples are:

- Weak König's Lemma: X is an infinite binary tree by φ(X), and Y is an infinite path through X by ψ(X, Y);
- Ramsey's Theorem for Pairs and 2 Colors: X is a 2-coloring of unordered pairs of numbers by φ(X), and Y is an infinite homogeneous set by ψ(X, Y).

We consider mathematical problems from three angles: the prooftheoretic, the model-theoretic and the computability-theoretic one. The proof-theoretic angle: *Reverse Mathematics*

We work over a weak base theory, usually RCA₀ (PA⁻ with Σ_1^0 -Induction and Δ_1^0 -Comprehension, essentially codifying computable mathematics), and measure the proof-theoretic strength of mathematical problems in the usual proof calculus.

E.g., one can show that Weak König's Lemma and Ramsey's Theorem for Pairs and 2 colors are independent over RCA_0 . Ramsey's Theorem for Pairs with 2 colors and with 3 colors are equivalent, but strictly weaker than Ramsey's Theorem for Triples with 2 colors.

On the one hand, this approach is less restrictive: We can use assumptions repeatedly.

But our proof (thinking model-theoretically, i.e., semantically) has to work for any model of arithmetic, including non-standard models, which may not satisfy full (first-order) induction. (E.g., the Infinite Pigeonhole Principle does not follow from RCA₀.)

Introduction Mathematical Problems The degree 1 Weihrauch Reducibility

The model-theoretic angle: $P \leq_{\omega} Q$

Instead of considering all models of our theory, we can only consider models with a standard first-order part (so-called ω -models, with an (often countable) second-order part $S \subseteq \mathcal{P}(\omega)$).

We then work with semantic implication: A problem P is reducible to a problem Q if every model (ω, S) of Q is a model of P.

This approach has not been explored very much. (It is sometimes called the ω -model reducibility and denoted as $Q \models_{\omega} P$.) It avoids "pesky" problems with induction. E.g., the Infinite Pigeonhole Principle is just outright true (in ω -models of RCA₀). The (less restrictive) computability-theoretic approach:

Call *P* computably reducible to Q ($P \leq_c Q$) if

- every *P*-instance *X* computes a *Q*-instance \hat{X} , and
- every Q-solution Ŷ to this X̂, together with X, computes a P-solution Y to X.

This approach is more restrictive: We can use assumptions only once but can argue computability-theoretically. (If Y can be computed only from \hat{Y} without using X, we write $P \leq_{sc} Q$.)

E.g., now Ramsey's Theorem for Pairs with 3 colors does not computably reduce to Ramsey's Theorem for Pairs with 2 colors.

The (more restrictive) computability-theoretic approach: *Weihrauch reducibility*

We restrict the previous approach by requiring uniformity: $P \leq_W Q$ if there are Turing functionals Φ and Ψ (the *forward* and the *backward* functionals) such that

- every *P*-instance *X* computes a *Q*-instance $\hat{X} = \Phi(X)$, and
- every Q-solution Ŷ to this X̂, together with X, uniformly computes a P-solution Y = Ψ(Ŷ ⊕ X) to X.

This is the most restrictive approach: We are allowed to query Q only once, and only uniformly so.

(If Y can be computed only from \hat{Y} as $\Psi(\hat{Y})$, we write $P \leq_{sW} Q$.)

E.g., we have $DNR_2 \leq_c DNR_3$ but $DNR_2 \not\leq_W DNR_3$.

Much research about Weihrauch reducibility concerns applications, often via "representing" problems in other spaces via "names" in $\mathbb{N}^{\mathbb{N}}.$

However, we consider the *Weihrauch degrees* as a *degree structure*: So we change notation:

Consider problems as partial multi-valued functions $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, mapping problems x satisfying $\varphi(x)$ to the set of all solutions y satisfying $\psi(x, y)$.

We denote the set of partial multi-valued functions $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ by \mathcal{PF} , and the quotient $(\mathcal{PF} / \equiv_W, \leq)$ (with the induced partial order) by \mathcal{W} .

Basic Facts about \mathcal{W} :

 \mathcal{W} is a partial order with least element $\mathbf{0} = \{\emptyset\}$. Under AC, \mathcal{W} has no greatest (or even maximal) element.

 \mathcal{W} has size $2^{\mathfrak{c}} = 2^{2^{\aleph_0}}$.

In fact, every Weihrauch degree $\neq 0$ has size 2^c.

Every nontrivial lower cone in \mathcal{W} has size $2^{\mathfrak{c}}$.

Every nontrivial maximal antichain in \mathcal{W} must be uncountable. There is a maximal antichain of size 2^c , but nothing more is known.

Every well-ordered ascending chain in $\ensuremath{\mathcal{W}}$ of countable cofinality has an upper bound.

For every $\kappa \leq \mathfrak{c}$ of uncountable cofinality, there is an ascending chain in \mathcal{W} of type κ without upper bound.

(This is open for $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$.)

Introduction Mathematical Problems
The degree 1 Weihrauch Reducibility

Quite a few natural operations on \mathcal{PF} have been defined, some of which are degree-theoretic, and some of which are not.

The following operations of meet and join make $\ensuremath{\mathcal{W}}$ into a distributive lattice:

$$f \sqcup g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}, \quad (f \sqcup g)(i, x) = \begin{cases} \{0\} \times f(x), & \text{if } i = 0, \\ \{1\} \times g(x), & \text{if } i = 1; \end{cases}$$

 $f \sqcap g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}, \quad (f \sqcap g)(x, y) = (\{0\} \times f(x)) \cup (\{1\} \times g(y)).$

The next "natural" degree-theoretic question concerns the (un)decidability and complexity of the first-order theory of W. The Weihrauch degree $\mathbf{1} = \deg(\mathrm{id})$ of the identity function

$$\mathsf{id}:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}},x\mapsto x$$

plays a special role as we will now explore.

The Lattice of the Medvedev Degrees:

A mass problem is a subset $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$.

A mass problem \mathcal{A} is *Medvedev reducible* to a mass problem \mathcal{B} $(\mathcal{A} \leq_M \mathcal{B})$ if there is a Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$. (So, in particular, $\Phi(x)$ is a total function for all $x \in \mathcal{B}$.) Denote the quotient $(\mathcal{P}(\mathbb{N}^{\mathbb{N}})/\equiv_M, \leq)$ of *Medvedev degrees* by \mathcal{M} .

We next define, for each $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$, the function $d_{\mathcal{A}} :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ mapping each $x \in \mathcal{A}$ to 0^{ω} . (Note $d_{\mathcal{A}} \equiv_W \text{id} \upharpoonright \mathcal{A}$.)

Then the map $d: \mathcal{P}(\mathbb{N}^{\mathbb{N}}) \to \mathcal{PF}, \mathcal{A} \mapsto d_{\mathcal{A}}$ induces an embedding of \mathcal{M}^{op} (the Medvedev degrees under the *reverse* ordering) into \mathcal{W} (by Higuchi/Kihara 2013, following Brattka/Gherardi 2011). This embedding is *onto* the cone $\mathcal{W}(\leq 1)$ in the Weihrauch degrees below deg_W(id).

So note $\mathcal{M}^{op} \cong \mathcal{W}(\leq 1) = \{ \deg_{\mathcal{W}}(\mathsf{id} \restriction \mathcal{A}) \mid \mathcal{A} \subseteq \mathcal{P}(\mathbb{N}^{\mathbb{N}}) \}.$

IntroductionThe cone below deg(id)The degree 1The definability of deg(id)

Question (Pauly 2020)

Is $\mathbf{1} = \deg_{W}(\mathsf{id})$ definable in (\mathcal{W}, \leq) ?

Theorem (Lempp, J. Miller, Pauly, M. Soskova, Valenti)

The degree $\mathbf{1}$ is definable in (\mathcal{W},\leq) in two ways:

- ${\color{black} 0} \hspace{0.1 cm} 1$ is the greatest degree that is a strong minimal cover in $\mathcal W.$
- I is the least degree such that the cone above it is dense.

Theorem (Lewis-Pye, Nies, Sorbi 2009, Shafer 2011)

The first-order theory of (\mathcal{M},\leq) is as complicated as third-order arithmetic.

Corollary (Lempp, J. Miller, Pauly, M. Soskova, Valenti)

The first-order theory of (\mathcal{W}, \leq) (and of $(\mathcal{W}(\leq 1), \leq)$) is as complicated as third-order arithmetic.

Proof Sketch (1):

For $x \in \mathbb{N}^{\mathbb{N}}$, let $\{x\}^+ = \{(e)^{\frown}y \mid \Phi_e(y) = x \text{ and } y \notin_{\mathcal{T}} x\}.$

Theorem (Dyment 1976)

In the lattice of the Medvedev degrees ($\mathcal{M},\leq,\wedge,\vee$):

- \mathcal{B} is a *minimal cover* of \mathcal{A} iff there is $x \in \mathcal{A}$ with $\mathcal{A} \equiv_{\mathcal{M}} \mathcal{B} \wedge \{x\}$ and $\mathcal{B} \wedge \{x\}^+ \equiv_{\mathcal{M}} \mathcal{B}$.
- The strong minimal covers are precisely of the form (deg_M({x}), deg_M({x}⁺)) for any x ∈ ℝ^N.

So being the Medvedev degree of a singleton (i.e., being a *degree* of *solvability*) is definable in \mathcal{M} .

Corollary

$$\begin{split} \mathbf{1} &= \deg_W(\mathsf{id}) \text{ is a strong minimal cover of } \deg_W(\mathsf{id} \upharpoonright \mathrm{NREC}), \\ \text{where } \mathrm{NREC} &= \deg_M(\{0^\omega\}^+) = \deg_M(\{x \in \mathbb{N}^\mathbb{N} \mid x >_\mathcal{T} 0^\omega\}). \end{split}$$

IntroductionThe cone below deg(id)The degree 1The definability of deg(id)

Theorem (Lempp, J. Miller, Pauly, M. Soskova, Valenti)

In the Weihrauch degrees (\mathcal{W}, \leq) :

- deg_W(g) is a minimal cover of deg_W(f) iff $g \equiv_W f \sqcup id \upharpoonright \{x\}$ for some $x \in \mathbb{N}^{\mathbb{N}}$ with dom(f) $\leq_M \{x\}$ and dom(f) $\leq_M \{x\}^+$.
- deg_W(g) is a strong minimal cover of deg_W(f) iff there is $x \in \mathbb{N}^{\mathbb{N}}$ with $g \equiv_W \text{id} \upharpoonright \{x\}$ and $f \equiv_W \text{id} \upharpoonright \{x\}^+$.

In particular, $\deg_{W}(id)$ is the greatest strong minimal cover in W, and every Weihrauch degree has at most one strong minimal cover. Our proof critically relies on the following

Lemma

- If deg_W(g) is a minimal cover of deg_W(f), then there is h with $|\operatorname{dom}(h)| = 1$ such that $g \equiv_W f \sqcup h$.
- If deg_W(g) is a strong minimal cover of deg_W(f), then there is h ≡_W g with | dom(h)| = 1.

Proof of "If deg_W(g) is a minimal cover of deg_W(f), then there is h with |dom(h)| = 1 such that $g \equiv_W f \sqcup h$."

Construct
$$\xi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$$
 as $\xi = \bigcup_{s \in \omega} \xi_s$ for finite functions ξ_s .
Define $G_{\xi}(x, \xi(x)) = g(x)$.

Then $G_{\xi} \leq_W g$ for all ξ . We *try* to ensure $f <_W f \sqcup G_{\xi} <_W g$ by letting ξ "scramble" the domain of g.

At odd stages, we try to ensure $G_{\xi} \not\leq_W f$ via the pair (Φ_e, Φ_i) .

At even stages we try to ensure $g \not\leq_W f \sqcup G_{\xi}$ via the pair (Φ_e, Φ_i) .

So this construction has to start failing at some finite stage s with some ξ_s .

This gives $g \equiv_W f \sqcup G_{\xi_s}$ for a finite function G_{ξ_s} . But $G_{\xi_s} \equiv_W \bigsqcup_{i_n} h_i$ for functions h_i with $|\operatorname{dom}(h_i)| = 1$. Since $\operatorname{deg}_W(g)$ is a minimal cover of $\operatorname{deg}_W(f)$, we have $g \equiv_W f \sqcup h_j$ for some j < n.

Proof Sketch (2):

We rely on the following

Lemma

The following are equivalent for $f \in \mathcal{PF}$:

- id $\not\leq_W f$;
- There are g, h ∈ PF such that f ≤_W g <_W h and deg_W(h) is a minimal cover of deg_W(g).

Thus, in particular, the Weihrauch degrees ≥ 1 are dense, and 1 is least such.

Introduction The degree 1

Thank you!