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Exercise 1. Prove that the following are well-defined operations in ZFC. First,
write down precisely what this means in each case.

(a) A ∪B,

(b) A ∩B,

(c) A \B.

Solution: We will take note of the axioms we are applying in the following
solution. In all, we use extensionality to obtain that the resulting set is uniquely
well-defined.

(a) Given two sets A and B, A ∪B is the (unique by extensionality) set such
that

∀x(x ∈ (A ∪B) ↔ (x ∈ A ∨ x ∈ B)). (1)

It exists by applying the axiom of union to the set obtained by applying the
axiom of pairing to A and B. In other words, A∪B :=

⋃
{A,B}. Indeed,

under this definition, an arbitrary x is in A∪B iff ∃y(y ∈ {A,B}∧ x ∈ y)
iff ∃y((y = A∨ y = B)∧x ∈ y), and first-order logic proves that the latter
is equivalent to x ∈ A ∨ x ∈ B.

(b) Given A and B, A ∩B is the unique set such that

∀x(x ∈ (A ∩B) ↔ (x ∈ A ∧ x ∈ B)). (2)

It can be shown to exist by applying the axiom schema of comprehension
to create the set {x ∈ A | φ(x,B)} with φ(x,B) ≡ x ∈ B.

(c) Given A and B, A \B is the unique set such that

∀x(x ∈ (A \B) ↔ (x ∈ A ∧ x ̸∈ B)). (3)

It can be shown to exist by applying the axiom schema of comprehension
to create the set {x ∈ A | φ(x,B)} with φ(x,B) ≡ x ̸∈ B. ■

Exercise 2. Recall Kuratowski’s definition of ordered pair. Denote a pair as
⟨x, y⟩. Prove in ZFC that if ⟨x, y⟩ = ⟨x′, y′⟩ then x = x′ and y = y′. Take note
of the axioms that you need to use to make this definition work.

Solution: Kuratowski defines ⟨x, y⟩ = {{x}, {x, y}}.
Suppose that ⟨x, y⟩ = ⟨x′, y′⟩. We show x = x′ and y = y′, but first we make

some observations about ⟨x, y⟩.
First, note that x ∈ z for every z ∈ ⟨x, y⟩, and indeed the only set satisfying

this property is x itself. From this, we immediately conclude x = x′.
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Second, note that y ∈ z for some z ∈ ⟨x, y⟩, and only x and y satisfy this
property. Thus, we conclude y = x′ or y = y′. Likewise, y′ = x or y′ = y. From
this we conclude that y = y′: the only way for this not to directly be the case
would have y = x′ = x = y′ anyway.

The only axiom needed to make this definition work is the axiom of pairing,
to ensure that the pair ⟨x, y⟩ exists. Otherwise, no axioms were used. ■

Exercise 3. John’s professor erased the definition from the board too quickly
for him to write it down, so he had to jot it from memory. Instead of Kura-
towski’s definition, he wrote down: ⟨x, y⟩ = {x, y}. What is wrong with this
definition?

Rose suffered a similar issue, but instead she wrote: ⟨x, y⟩ = {x, {x, y}}. Is
there anything wrong with this definition?

Dave missed the class entirely, and came up with the following definition on
his own: ⟨x, y⟩ = {{0, x}, {1, y}}. Is there anything wrong with this definition?

Finally, Jade tried to simplify Dave’s definition, and defined ⟨x, y⟩ = {x, {y}}.
What is wrong with this definition?

Bonus question: Can you come up with any interesting alternate definitions
of your own?

Solution: John’s definition fails to distinguish the pair ⟨x, y⟩ from ⟨y, x⟩.
Rose’s definition works, but, unlike in Kuratowski’s definition, we will require

the axiom of foundation to do so. We prove now that Rose’s definition works.
First, note that x may be recovered from ⟨x, y⟩R as the ∈-minimal element of

⟨x, y⟩R (there must be some by regularity, and x is the only possibility). Then,
we may also recover the set ⟨x, y⟩ as the non-∈-minimal element of ⟨x, y⟩R, and
either this is a singleton set, in which case y = x is recovered, or it is a set with
two distinct elements, in which case y is the unique element which is not x.

This proof requires foundation in an essential way. To understand why, the
reader will have to accept that, without the axiom of foundation, it is consistent
that there exists a set x such that x = {{x, 0}, 1}. (The choice of 0 and 1 are
irrelevant; any two distinct sets of the reader’s choice would suffice.) Then,
if x′ = {x, 0}, it is easy to check that ⟨x, 0⟩ = ⟨x′, 1⟩, so this is not a good
definition of pair in this case!

Dave’s definition works, but unlike in Kuratowski’s definition, one requires
enough axioms of ZFC to prove that 0 and 1 exist. It suffices to know that 0
exists (a very reasonable demand...), as in this case 1 exists by pairing, which
we will need to use anyway.

To prove that Dave’s definition works, we begin by proving a lemma.
Lemma X. If {a, b} = {a, c} then b = c.
Proof of Lemma. In this event, we know that b ∈ {a, c}, hence either b = c

(in which case we’re done) or b = a. In the latter case, likewise, we have either
c = b, and so we’re done, or c = a = b, and so we’re also done. □

Now, suppose that {{0, x}, {1, y}} = {{0, x′}, {1, y′}}. If {0, x} = {0, x′},
then three applications of Lemma X immediately give us x = x′ and y = y′, so
let us suppose that this is not the case.
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Then, {0, x} = {1, y′}, and so we conclude 1 ∈ {0, x}. Since 1 ̸= 0, we
have x = 1. Likewise, y′ = 0. Now, an application of Lemma X gives us
that {1, y} = {0, x′}, and the same argument again will yield x′ = 1 = x and
y = 0 = y′, and the proof that Dave’s definition works is complete.

Jade’s definition fails to distinguish ⟨{x}, y⟩ from ⟨{y}, x⟩. ■

Exercise 4. Given two sets A, B, define the cartesian product A×B and prove
in ZFC that it exists.

Solution: The cartesian product A × B is the (unique by extensionality) set
satisfying the condition

∀x(x ∈ (A×B) ↔ ∃a∃b(a ∈ A ∧ b ∈ B ∧ ⟨a, b⟩ = x)). (4)

To prove that this set exists, we apply the pairing and union axioms to take
A ∪ B, then apply the power set axiom twice, finally followed by the compre-
hension axiom. Indeed, we construct by comprehension:

A×B = {x ∈ P(P(A ∪B)) | ∃a∃b(a ∈ A ∧ b ∈ B ∧ ⟨a, b⟩ = x) }. (5)

The only thing that we need to show is that every pair is in A×B. This is
just a matter of noticing that, for a ∈ A and b ∈ B, ⟨a, b⟩ = {{a}, {a, b}} is in
P(P(A ∪B)), and thus:

x ∈ P(P(A ∪B)) ∧ ∃a∃b(a ∈ A ∧ b ∈ B ∧ ⟨a, b⟩ = x) ⇐⇒
⇐⇒ ∃a∃b(a ∈ A ∧ b ∈ B ∧ ⟨a, b⟩ = x).

(6)

■
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