Let $f: X \to Y$ be a morphism of smooth algebraic varieties over a field of characteristic 0. Define $K \subset X \times Y$ by

$$K := \{(x, \xi) \mid x \in X, \xi \in T^*_f(x) Y, \xi(\text{Im } df_x) = 0\}.$$

Let $\pi: X \times Y \to Y$ denote the projection. Then $\pi(K) \subset T^* Y$ is a constructible subset. The proposition below gives an upper and lower bound for $\pi(K)$.

Set $X_r := \{x \in X \mid \text{rank } (dx_f) = r\}$. Let $X_{r, \alpha}, \alpha \in \text{Irr}(X_r)$, be the irreducible components of X_r. Set $Y_{r, \alpha} := f(X_{r, \alpha})$. Set

$$\text{Irr}_{\text{ess}}(X_r) := \{x \in \text{Irr}(X_r) \mid \dim X_{r, \alpha} \geq r\}$$

where "ess" stands for "essential".

Proposition. (i) $\pi(K)$ is contained in the union of the conormal bundles of the subvarieties $Y_{r, \alpha}, r \in \mathbb{Z}_+, \alpha \in \text{Irr}_{\text{ess}}(X_r)$.

(ii) If $\dim Y_{r, \alpha} = r$ then $\pi(K)$ contains the conormal bundle of $Y_{r, \alpha}$.

Remarks. (a) The characteristic 0 assumption implies that $\dim f(X_r) \leq r$, so $\dim Y_{r, \alpha} \leq r$.

(b) The conormal bundle of a singular subvariety is defined to be the closure of the conormal bundle of its smooth locus.

The proposition follows immediately from lemmas 1 and 2 below.
Lemma 1. If \(\dim X_{\Gamma, \omega} < r \) then \(X_{\Gamma, \omega} \times X \) is nowhere dense in \(K \).

Proof. We have

\[
\dim (X_{\Gamma, \omega} \times K) = \dim X_{\Gamma, \omega} + \dim Y - 1 < \dim Y.
\]

On the other hand, \(K \subseteq X \times Y \) is locally defined by \(m \) equations, \(m := \dim X \). So the dimension of each irreducible component of \(K \) is not less than \(\dim (X \times Y) - m = \dim Y \).

Lemma 2. Let \(X'_{\Gamma, \omega} \subset X_{\Gamma, \omega} \) denote the open subset of all \(x \in X_{\Gamma, \omega} \) such that

(a) \(x \) is a nonsingular point of \(X_{\Gamma, \omega} \);
(b) \(f(x) \) is a nonsingular point of \(Y_{\Gamma, \omega} \);
(c) the map \(T_x X_{\Gamma, \omega} \xrightarrow{df_x} T_{f(x)} Y_{\Gamma, \omega} \) is surjective.

Then \(X'_{\Gamma, \omega} \neq \emptyset \) and

\[\forall x \in X'_{\Gamma, \omega}, \quad \text{Im} (df_x : T_x X \rightarrow T_{f(x)} Y) = T_{f(x)} Y_{\Gamma, \omega}. \]

Moreover, if \(\dim Y_{\Gamma, \omega} = r \) then the inclusion in (\(\star \)) is an equality.

Proof. \(X'_{\Gamma, \omega} \neq \emptyset \) by the characteristic \(D \) assumption. The inclusion (\(\star \)) follows from (c). If \(\dim Y_{\Gamma, \omega} = r \) then the inclusion (\(\star \)) has to be an equality because the l.h.s. of (\(\star \)) has dimension \(r \).

Example \((\text{M. Kashiwara})\). \(X = Y = \mathbb{A}^2 \), \(f(t, x) = (t, t^n x) \), \(n \geq 1 \).

Then \(X_0 = \emptyset \), \(X_1 = \{(t, x)| t = 0\} \), \(X_2 = X \setminus X_1 \). If \(n = 1 \) then \(\pi(K) \) is the union of the zero section and \(T_y^* Y \), where \(y_0 := (0, 0) \in Y \). But if \(n > 1 \) then \(\pi(K) \) is the union of the zero section and a 1-dimensional subspace of \(T_y^* Y \).
Proposition 2. If \(r \geq \dim Y - 1 \) then \(\text{Irr}_{\text{ess}}(X_r) = \text{Irr}(X_r) \).

Proof. If \(r = \dim Y \) then \(X_r \) is open in \(X \), so if \(X_r \neq \emptyset \) then \(\dim X_r = \dim X \geq r \). If \(r = \dim Y - 1 \) then \(X_r \subset X \) is locally defined by \(\dim X - r \) equations, so each irreducible component of \(X_r \) has dimension \(\geq r \). \(\blacksquare \)

In general, it may happen that \(\text{Irr}_{\text{ess}}(X_r) \neq \text{Irr}(X_r) \).

Example. \(X = \mathbb{A}^{n+1}, n \geq 1, Y = \mathbb{A}^3 \), \(f(t, x_1, \ldots, x_n) = (t, \sum_{i=1}^{n} x_i^2, t x_1) \).

Then \(X_1 = \{0\} \), so \(\dim X_1 = 0 \) and \(\text{Irr}_{\text{ess}}(X_1) = \emptyset \).