Let me explain what my notes are about and why they are related to Sasha's talk.

Subject of the notes.

Let $f: X \to Y$ be a morphism of smooth algebraic varieties. Associated to f is the following well known subset $Z_f \subseteq T^* Y$:

if $y \in Y$ and $\eta \in T^*_y Y$ then $(y, \eta) \in Z_f$ if and only if there exists $x \in f^{-1}(y)$ such that $\eta \in \ker (T^*_y Y \to T^*_x X)$.

(The idea is that Z_f measures the failure of f to be smooth.)

In the notes Z_f is denoted by $\pi(K)$. I discuss there the structure of Z_f assuming characteristic 0. However, Proposition 2 of the notes remains valid in any characteristic, Proposition 1 remains valid under the following assumption: the map $X_{r, x} \to Y_{r, x}$ is generically smooth for all r and x.

(I am using the notation from the notes.) This assumption is automatic in characteristic 0, but it doesn't hold in Deligne's examples mentioned by Sasha.

The relation with Sasha's talk is clear from the previous sentence and the following remark: if $f: X \to Y$ is proper then $SS(Rf_* \mathcal{O}_X) \subseteq Z_f$.