Classification of surfaces: ruled surfaces

Paul VanKoughnett

November 6, 2014

Notation 1. K is a canonical divisor, ω_X is the canonical sheaf, $P_n = h^0(\omega_X^n)$ is the nth plurigenus. $\chi(\mathcal{O}_X) = h^0(\mathcal{O}_X) - h^1(\mathcal{O}_X) + h^2(\mathcal{O}_X)$ is the Euler characteristic. I’ll use ‘divisor’ and ‘line bundle’ notation interchangeably, and I’ll often write things like $h^0(D)$ where I mean $h^0(\mathcal{O}(D))$. I’ll explain everything else.

Be warned that in the literature, the letter q (irregularity) is sometimes used for $h^1(\mathcal{O}_X)$ and sometimes for $\dim \text{Pic}_X$, which, as we’ve seen, can be smaller than $h^1(\mathcal{O}_X)$ in positive characteristic.

We are classifying surfaces in terms of their plurigenera. We’ve got a start via two beefy theorems of Castelnuovo: the contractibility criterion, which says that a rational curve with self-intersection -1 can be blown down, and the rationality criterion, which says that a surface with $h^1(\mathcal{O}_X) = P_2 = 0$ is rational. Today we’ll nearly finish proving the following robust characterization of ruled surfaces.

Theorem 2. The following are equivalent for a surface X:

1. X is ruled;
2. All $P_n(X)$ are zero (for $n > 0$);
3. $P_{12}(X) = 0$;
4. (assuming X minimal) $K \cdot C < 0$ for some curve C.

Proof. 2 \Rightarrow 3 trivially. 1 \Rightarrow 2 because the plurigenera are birational invariants, and we can calculate then for $C \times \mathbb{P}^1$. In fact, if C and D are any curves, and $p_1 : C \times D \to C$, $p_2 : C \times D \to D$ are the projections, then

$$\Omega_{C \times D}^1 \cong p_1^*\Omega_C^1 \oplus p_2^*\Omega_D^1 \quad \text{and thus} \quad \omega_{C \times D} \cong p_1^*\omega_C \oplus p_2^*\omega_D.$$

So $P_n(C \times D) = P_n(C)P_n(D)$. Taking $D = \mathbb{P}^1$, whose canonical bundle is anti-ample, we see that $P_n(C \times \mathbb{P}^1) = 0$ for all $n > 0$.

That 3 \Rightarrow 1, probably the most mysterious step right now, will follow by simply calculating P_{12} to be nonzero for all non-rulled surfaces; in a certain sense, this is the whole remainder of the classification theorem.

1 \Rightarrow 4: we’ve shown that a minimal ruled non-rational surface is geometrically ruled. Let F be a fiber; the genus formula for F gives

$$-2 = F^2 + F \cdot K,$$

and since distinct fibers are algebraically equivalent but disjoint, we have $F^2 = 0$. Thus, $F \cdot K = -2$. Likewise, one can show that a minimal rational surfaces is either geometrically ruled over \mathbb{P}^1 or is \mathbb{P}^2, and in the latter case, $\omega \cong \mathcal{O}_{\mathbb{P}^2}(-3)$, which has negative self-intersection with every curve.

The remainder of the talk will deal with Mumford’s proof of 4 \Rightarrow 1 in all characteristics, building on the proof in characteristic 0 by Enriques and Kodaira. Let’s first pause for a moment to run through a few new techniques.

The Albanese variety

Definition 3. The Albanese variety of a variety X is the universal abelian variety with a map from X. That is, the Albanese is an abelian variety together with a map $\alpha : X \to \text{Alb}(X)$, and if A is another abelian
variety over \(k \), then there is a unique arrow filling every diagram of varieties of the form

\[
\begin{array}{c}
X \\
\downarrow \alpha \\
\text{Alb}(X).
\end{array}
\]

Note that I haven’t required the diagonal map here to be a homomorphism of abelian varieties. Nevertheless, one can show (for instance, see Mumford’s *Abelian Varieties* book) that any morphism of abelian varieties is the composition of a homomorphism and a translation; contrariwise, any morphism of abelian varieties preserving the identity point is a homomorphism. Thus, if one prefers homomorphisms of abelian varieties, one can just work in a category of pointed varieties instead.

I won’t prove anything about this; given what we know, the fastest construction is to take \(\text{Alb}(X) = (\text{Pic}_X^0)_\text{red} \), the dual abelian variety to the reduction of the identity component of the Picard scheme.

Example 4. If \(C \) is a curve of genus \(g \), then the Albanese is just the Jacobian of \(C \), a \(g \)-dimensional abelian variety. If \(C \cong \mathbb{P}^1 \), then the Albanese is a point. Otherwise, \(C \) injects into its Jacobian.

Example 5. If \(X \) is a surface, the map \(\alpha : X \to \text{Alb}(X) \) need not be an injection. Often, the image of \(\alpha \) will be a curve, and then an easy category-theoretic argument shows that \(\text{Alb}(X) \) must be the Jacobian of that curve.

Étale cohomology

One of the reasons that we like working over \(\mathbb{C} \) is because we can treat our varieties as complex analytic spaces instead, and access all the nice tools of algebraic topology. In particular, we learn a lot about a variety from the singular cohomology groups of the associated complex analytic space. For surfaces, the key tool here is the **Noether formula**

\[
\chi(\mathcal{O}_X) = \frac{1}{12} (K^2 + \chi_{\text{top}}(X)) = \frac{1}{12} (K^2 + 2 - 2b_1 + b_2).
\]

Here \(b_i = h^i_{\text{sing}}(X) \) is the \(i \)th **Betti number**, and \(\chi_{\text{top}}(X) = b_0 - b_1 + b_2 - b_3 + b_4 \) is the **topological Euler characteristic**. By Poincaré duality, \(b_i = b_{4-i} \), giving the formula above. By Hodge theory, \(b_1 = 2h^1(\mathcal{O}_X) \), so we could further write

\[
\chi(\mathcal{O}_X) = \frac{1}{12} (K^2 + 2 - 4h^1(\mathcal{O}_X) + b_2).
\]

Étale cohomology is the positive-characteristic response to this. I’ll say nothing about what it means, but it’s written \(H^i_{\text{ét}}(X, \mathbb{Z}_\ell) \), where \(\ell \) is a suitable prime not equal to \(\text{char} k \). The following properties of singular cohomology carry over:

- If \(X \) is projective, \(H^i_{\text{ét}}(X, \mathbb{Z}_\ell) \) is a finitely generated \(\mathbb{Z}_\ell \)-module for each \(i \), concentrated in degrees \(0 \leq i \leq 2 \dim X \).
- If \(X \) is smooth, \(2 \dim \text{Pic}_X = h^1_{\text{ét}}(X, \mathbb{Z}_\ell) \).
- If \(X \) is a surface, there’s a Noether formula

 \[
 \chi(\mathcal{O}_X) = \frac{1}{12} (K^2 + 2 - 2b_1 + b_2),
 \]

 where \(b_i \) is the rank of \(H^i_{\text{ét}}(X, \mathbb{Z}_\ell) \).
- There’s also an exponential map \(H^1_{\text{ét}}(X, \mathbb{G}_m)_{\ell} \to H^2_{\text{ét}}(X, \mathbb{Z}_\ell) \), whose image one can show to be \(\text{NS}(X)_{\ell} \).

 In particular, this gives a quick proof that the Néron-Severi group is finitely generated.
The rest of the proof

Proof continued. Suppose that X is minimal and $K \cdot C < 0$. We’ve already seen that $K \cdot H < 0$ for some ample H. As effective divisors have positive degree in any projective embedding, this means that K cannot be linearly equivalent to an effective divisor, so that $h^0(K) = 0$. The same argument shows that $P_n = 0$ for all $n > 0$.

By Serre duality, $h^2(\mathcal{O}_X) = h^0(K) = 0$. Thus, we already get that the Picard scheme is smooth, and of dimension $h^1(\mathcal{O}_X)$.

Case 1. $K^2 > 0$. In this case, we use the Noether formula for étale cohomology:

$$\chi(\mathcal{O}_X) = \frac{1}{12}(K^2 + 2 - 4h^1(\mathcal{O}_X) + b_2).$$

(Since the Picard scheme is smooth, $b_1 = 2h^1(\mathcal{O}_X)$.) Also, $\chi(\mathcal{O}_X) = 1 - h^1(\mathcal{O}_X)$ since h^2 is zero, so we get

$$12 - 12h^1 = K^2 + 2 - 4h^1 + b_2$$

and thus

$$10 = 8h^1 + K^2 + b_2.$$

There’s an injection $NS(X) \to H^2_{\text{ét}}(X, \mathbb{Z}_t)$, so $b_2 \geq \text{rank } NS(X) \geq 1$. Thus, $h^1 = 0$ or 1. If $h^1 = 0$, then the Castelnuovo rationality criterion implies that X is rational.

Consider, then, the case $h^1 = 1$. The Albanese variety is a curve, and by Zariski’s main theorem, the fibers of $X \to \text{Alb}(X)$ are also curves. Let F be a fiber; then $F^2 = 0$ as before and $F \cdot H > 0$ since F is effective. Thus, F and H are linearly independent in $NS(X) \otimes \mathbb{Q}$, so the Néron-Severi group is rank at least 2, and thus $b_2 \geq 2$. But $K^2 > 0$ by hypothesis, and these numbers can’t fit into the Noether formula. This concludes the proof in this case.

Case 2. $K^2 \leq 0$.

Claim. For all $n > 0$, there is an effective divisor D with $h^0(D + K) = 0$ and $h^0(D) \geq n$.

Proof of claim. Fix n. Since $K \cdot H < 0$, for sufficiently large m we have $(nH + mK) \cdot H < 0$, and thus that $h^0(nH + mK) = 0$. Let m be the largest nonnegative integer with $h^0(nH + mK) > 0$; that is, there is an effective divisor D' linearly equivalent to $nH + mK$. Write $D' = D + D''$, where D is the sum of components C of D' with $C \cdot K < 0$, and D'' the sum of those components C'' with $C'' \cdot K \geq 0$. By construction, $h^0(D' + K) = 0$, and since global sections only go up as we add in effective divisors, $h^0(D + K) = 0$ as well. Furthermore, $h^2(K) = h^0(K - D) = 0$ as well; if not, then $K - D$ is linearly equivalent to an effective divisor, so K is linearly equivalent to an effective divisor, which contradicts $K \cdot H < 0$.

Next we calculate D^2. By the genus formula, $K \cdot D + D^2 \geq -2$, and $K \cdot D < 0$, so if $D^2 < 0$ as well, we must have $K \cdot D = D^2 = -1$ and $g(D) = 0$, contradicting minimality. (Even if D is reducible or has multiple components, the genus formula successfully computes its arithmetic genus, and one can show the only curves with arithmetic genus zero are in fact rational.) So $D^2 \geq 0$.

Finally, we use Riemann-Roch to find $h^0(D)$. We have

$$\chi(D) = h^0(D) - h^1(D) + h^2(D) = \frac{D \cdot (D - K)}{2} + \chi(\mathcal{O}_X).$$

Since $h^2(D) = 0$, we can simplify this to an inequality:

$$h^0(D) \geq \frac{D^2}{2} - \frac{D \cdot K}{2} + \chi(\mathcal{O}_X) \geq -\frac{D \cdot K}{2} + \chi(\mathcal{O}_X) \geq -\frac{D' \cdot K}{2} + \chi(\mathcal{O}_X) \geq \frac{n}{2} + \chi(\mathcal{O}_X).$$

By increasing n, we can make $h^0(D)$ arbitrarily large, proving the claim. \(\square\)

The reason we introduced D is to work with its Picard scheme. Note that $h^2(D) = h^0(K + D) = 0$, so that the exact sequence

$$0 \to \mathcal{O}(-D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0$$
induces a surjection $H^1(\mathcal{O}_X) \rightarrow H^1(\mathcal{O}_D)$. We already know that Pic^0_X is smooth, and $H^1(\mathcal{O}_X)$ is its tangent space at the identity; Pic^0_X is smooth since D is a curve; so the natural map $\text{Pic}^0_X \rightarrow \text{Pic}^0_D$, being a surjection on tangent spaces, is a surjection of group schemes.

One may ask how Pic^0_D behaves when D has singularities. In general, singularities introduce non-properness into the Jacobian of a curve. However, Pic^0_X is proper since X is smooth, and so Pic^0_D, being a quotient of X, is proper as well.

Now write $D = \sum n_i E_i$ with the E_i integral curves. Then Pic^0_D surjects onto $\text{Pic}^0_{E_i}$, so by the same token, $\text{Pic}^0_{E_i}$ is proper, and so E_i is smooth. The E_i together form a graph in X, and the same argument shows that this graph is a tree – if it were not, we’d get a copy of \mathbb{G}_m in Pic^0_D generated by a line bundle that twists as you go around the loop, contradicting properness of Pic^0_D.

Assume that for some i, $n_i \geq 2$. By the same argument, $\text{Pic}^0_{E_i} \rightarrow \text{Pic}^0_{2E_i}$, and $\text{Pic}^0_{2E_i} \cong \text{Pic}^0_{E_i}$. On tangent spaces, then, $H^1(2E_i) \cong H^1(E_i)$. Looking at the exact sequence

$$0 \rightarrow \mathcal{O}_{E_i}(-E_i^2) \rightarrow \mathcal{O}_{2E_i} \rightarrow \mathcal{O}_{E_i} \rightarrow 0,$$

we get $H^1(\mathcal{O}_{E_i}(-E_i^2)) = 0$. If $E_i^2 \geq 0$, then $\mathcal{O}_{E_i}(-E_i^2)$ is a nonpositive-degree sheaf on a smooth curve, and its h^1 can only be zero in a few restricted cases. We conclude that the curves E_i that appear multiply in D satisfy one of the following:

(a) $E_i^2 < 0$,

(b) E_i is rational and $E_i^2 = 0$ or 1,

(c) or E_i is elliptic and $E_i^2 = 0$, but $\mathcal{O}_{E_i}(-E_i^2) \not\cong \mathcal{O}_{E_i}$.

(Note also that $\mathcal{O}_{E_i}(-E_i^2)$ is the normal bundle of E_i in X.)

We now start to count these curves. By the Chow-van der Waerden theory quoted several lectures ago, in a fixed projective embedding, there are only finitely many curves of fixed degree d, up to algebraic equivalence. However, a curve C with $C^2 < 0$ must be in an algebraic equivalence class of its own; for if C is algebraically equivalent to C', then $C^2 = C \cdot C' > 0$. Thus, there are only finitely many curves E_i of degree d of type (a). Likewise, there are only finitely many curves E_i of degree d of type (c). I’m a little shaky on this point, but my intuition is that an algebraic family C_i of curves represents a normal deformation of C_0, so if $C_0^2 = 0$, then C_0 is algebraically equivalent to another curve only if it has trivial normal bundle.

(Mumford skips some steps here, and Masayoshi Miyanishi’s *Open Algebraic Surfaces* was helpful for the rest of the argument.) Our aim, at last, is to prove the following:

Lemma 6. Every point in an open subset of X lies on a rational curve.

Suppose this is proven, and consider the Albanese map $\alpha : X \rightarrow \text{Alb}(X)$. If $h^1 = 0$, then since $P_2 = 0$, X is rational by Castelnuovo. So we can take $h^1 > 0$. Since α maps rational curves to points (\text{Alb}(\mathbb{P}^1) being trivial), the generic fiber of $X \rightarrow \alpha(X)$ is a rational curve by the claim, and so $\alpha(X)$ is a curve and X is ruled.

Now let’s prove the lemma. There is a Hilbert scheme $H_{X,d}$ parametrizing rational curves of fixed degree d (in some fixed projective embedding), which is projective and in particular quasi-compact. If $\dim H_{X,d} = 1$, then the universal family of curves in X living over $H_{X,d}$ is 2-dimensional, and so the union of these curves is a 2-dimensional subscheme of X, that is, an open subscheme of X in which every point is on a rational curve. Thus, if the lemma is false, the Hilbert scheme is 0-dimensional and finite; so there are only countably many rational curves (in total) on X. In sum, there are only countably many curves of type (a)–(c) above.

Mumford, at this point, says that these curves can’t exhaust X. If the ground field k has uncountably many elements, this is true just by cardinality, so we reduce to this case. Again assuming $h^1 > 0$, we want to prove that the map $\alpha : X \rightarrow \text{Alb}(X)$ is ruled over its image, i. e. that the function field extension $k(\alpha(X)) \rightarrow k(X)$ is purely transcendental of dimension 1. One can show, using Tsen’s theorem, that this assertion is stable under replacing k with an algebraically closed field extension of k, so we can reduce to the case where k is uncountable.

Finally, we get that the curves (a)–(c) do not exhaust X. We are still assuming that $q = h^1 > 0$. Let P_1, \ldots, P_q be points that don’t lie on the above curves. Let D, as above, be a nonzero effective divisor with $h^0(K + D) = 0$, $h^0(D) \geq 3q + 1$. The condition that P_i is a multiple point of D is codimension 2: generically,
divisors linearly equivalent to \(D \) vanish to order 0 at \(P_i \), and we want them to vanish to order 2. So there’s an effective \(D' \sim D \) with double points at all \(P_i \). The only multiple components of \(D' \) are of type (a)–(c), so each \(P_i \) lies on only simple components; since each component is smooth, each \(P_i \) lies on exactly two components; since \(D' \) is a tree, the \(P_i \)s in total lie on \(q + 1 \) components, all of genus \(\geq 1 \) by hypothesis. The Picard scheme of each component is thus positive-dimensional. So we get

\[
q \geq \dim \text{Pic}_X^0 \geq \dim \text{Pic}_{D'}^0 \geq q + 1,
\]

a contradiction. This proves the lemma, and the theorem. \(\square \)