Do the following exercises from Fulton and Harris:

5.6, 5.8, 5.11

Also do the following exercises:

1. Recall that for $n \geq 1$, and any field k, we let $\mathbb{P}^{n-1}(k)$ denote the set of lines in k^n.

 (a) Show that the natural action of $\text{GL}_n(k)$ on k^n induces a transitive action of $\text{GL}_n(k)$ on $\mathbb{P}^{n-1}(k)$, and compute the stabilizer of the line $k \times 0 \times \cdots \times 0$ under this action.

 (b) Taking k to be a finite field \mathbb{F}_q, use the result of part (a) to inductively compute the order of $\text{GL}_n(\mathbb{F}_q)$.

2. (This question gives the details of one of the discussions in Monday’s class.) Let E/F be a finite Galois extension of fields, with Galois group G. Regard $E \otimes_F E$ as an E-algebra via the map $E \to E \otimes_F E$ given by $e \mapsto e \otimes 1$, and for each $g \in G$, define a homomorphism of E-algebras $\phi_g : E \otimes_F E \to E$ via $\phi_g : e_1 \otimes e_2 \mapsto e_1 g(e_2)$.

 Verify that each ϕ_g is a well-defined homomorphism of E-algebras, and that the product of the ϕ_g (as g ranges over all elements of G) induces an isomorphism of E-algebras

 $$E \otimes_F E \cong \prod_{g \in G} E.$$

3. Describe all the conjugacy classes in (a) $\text{GL}_2(\mathbb{R})$; (b) $\text{GL}_2(\mathbb{Q})$.