ALGEBRAIC GEOMETRY - THIRD HOMEWORK (DUE WEDNESDAY FEB 12)

Please complete all the questions.

1. (a) Consider the nodal cubic curve $X Y=(Y-X)^{3}$ over a field k. As in the last homework set, show that the smooth points on this curve are parameterized by the lines $y=t x$ of slope $t \neq 0, \infty$ passing through the origin. Show that the "chord-tangent" law defines a group structure on the non-singular points of (the projectivization of) C, with the unique point at infinity as the idenity, and that the preceding bijection identifies this group with the multiplicative group k^{\times}.
(b) Consdider the cuspidal cubic curve $X^{2}=Y^{3}$. Analogously to (a), show that the smooth points on this curve are parameterized by the lines $y=t x$ of slope $t \neq \infty$. Show that the "chord-tangent" law defines a group structure on the non-singular points of (the projectivization of) C, with the unique point at infinity as the idenity, and that the preceding bijection identifies this group with the additive group $(k,+)$.
2. Prove a precise statement of the form "If 9 points in $\mathbb{P}^{2}(k)$ are in general position, then there is a unique cubic curve passing through them, which is furthermore irreducible", i.e. replace "general position" by a precise collection of conditions (of the form "no 3 of which are colinear", or something similar), and prove your result by arguing with linear subspaces in the \mathbb{P}^{9} of cubics.
3. Let k be an algebraically closed field not of characteristic 2 , let $f(x) \in k[x]$ be a cubic in x with distinct roots in k, and consider the projective cubic curve C whose affine equation is $y^{2}=f(x)$.
(a) Show that C has a unique point at infinity, which we denote O.
(b) Show that C is smooth at all of its points.
(c) Show that the point O at infinity is an inflection point.
(d) Use the chord-tangent law to make $C(k)$ into a group, taking O to be the identity. Show that the negative (with respect to the group structure) of a point $(x, y) \in C(k)$ is equal to $(x,-y)$.
(e) Show that C has 3 points of exact order 2. (Hint: consider solving the equation $-P=P$ in $C(k)$.)
4. We let k be the field \mathbb{C} of complex numbers, let

$$
f(x)=x^{3}-x^{2}-4 x+1 \in \mathbb{C}[x],
$$

and let C be as in the previous question.
(a) Explicitly compute the six intersection points of C with the conic $x^{2}+y^{2}=1$.
(b) Add up these six points using the group law on C, and verify explicitly that they sum uto O.

