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1. INTRODUCTION AND OVERVIEW

Algebraic geometry is a continuation of what is sometimes called analytic ge-
ometry, or coordinate geometry, in high school, a subject which I guess goes back
(at least) to Descartes, Fermat, and others of their era, who introduced algebraic
methods and the use of coordinates into the study of geometric questions.

The basic objects of investigation in algebraic geometry are so-called algebraic
varieties," which are (roughly speaking) the geometric point-sets that can be cut
out by systems of algebraic equations.

Despite its name, there are various approaches to algebraic geometry, some more
algebraic than others. In what is perhaps the most algebraic approach, a large
amount of commutative algebra is developed in advance, and this is then applied
to deduce geometric facts. This approach is powerful, but can feel somewhat un-
motivated for a beginner, since various simple geometric ideas can become hidden
in the commutative algebra formalism.

There is also a more analytic approach, which focuses on the case of algebraic
varieties over C, and uses analytic as well as algebraic tools. Certainly the use of
analytic tools (sometimes called transcendental methods in this context, to distin-
guish them from purely algebraic methods that, at least in principle, can work over
arbitrary ground fields) adds power, and can be illuminating. (As one example of

IThe word variety here is akin to the word manifold; it just indicates that we have a collection
of points bound together in some geometric way. Note e.g. that in French, variété is in fact the
word used for what is called a manifold in English.
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such illumination, the use of formal completion methods in commutative algebra
and its geometric applications is motivated by complex analytic ideas.)

Nevertheless, there is an appeal to using purely algebraic methods to investigate
objects that are defined in purely algebraic terms (although probably one shouldn’t
be too doctrinaire on this point), and for a number theorist interested in using
algebraic geometry to study Diophantine equations over number fields (or local
fields, or finite fields), algebraic methods are indispensible in any case.

In these notes we use algebraic methods (with a few remarks in the context
of algebraic varieties over the real and complex numbers indicating how the ideas
we introduce interact with more analytic and topological ideas). However, we
have tried to keep the presentation as geometric as possible, with an emphasis
on simple ideas in projective geometry, such as projection to linear subspaces,
dimension counting, and so on. One side-effect of this approach is that we don’t
develop terribly much commutative algebra; this can be regarded as either positive
or negative, depending on one’s predilections. Another is that we don’t begin
immediately with the Nullstellensatz for arbitrary algebraically closed fields, but
only prove this after developing a reasonable amount of projective geometry. This
necessitates the consideration of solutions in a universal domain in the meantime,
which adds a layer of complication to our basic set-up which may not be of universal
appeal.? Hopefully the advantages of our rather direct geometric perspecive provide
some compensation for its short-comings.

1.1. Conventions. Unless otherwise stated, all rings are assumed to be commuta-
tive with 1. A field is a non-zero ring in which every non-zero element is invertible.
An integral domain, or simply a domain, is a non-zero ring containing no non-zero
zero-divisors; equivalently, an integral domain is a ring that may be embedded into
a field. (One direction is clear; the other direction uses the construction of the field
of fractions.)

An ideal [ in a ring A is prime if A/I is an integral domain, and mazimal if A/I
is a field. Equivalently, a prime ideal in A is the kernel of a homomorphism from
A to a field, and a maximal ideal is the kernel of a homomorphism from A onto a
field.

Note that, by definition, prime and maximal ideals are proper (i.e. not equal to
all of A).

2. AFFINE SPACE

If k is a field, we let A™(k) denote the set k™. We typically label the coordinates
by x1,...,Tn.

All the concepts we study will be invariant under affine linear coordinate changes,
i.e. coordinates changes of the form x; — Z;'L=1 a;;xj+0b;, where (a;;) is an element
of GL, (k) (i.e. an invertible n X n matrix with entries in k) and (by,...,b,) € k™.

2.1. Polynomials as functions on affine space. We let k[z1, ..., z,] denote the
polynomial ring in the variables z1,...,2,. The elements of k[z1,...,x,] induce
functions on A™(k) in the obvious way (substitute the coordinates of a point into
the variables of the polynomial). In this way we can think of k[z1, ..., x,] as a ring
of functions on A™(k).

2In defense of this point of view, one can note that the idea of studying Diophantine equations
over Q by first considering the space of solutions over C is a rather natural one.
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Actually, we have to be a little careful on this point. A more precise statement
is the evaluating polynomials on points gives a homomorphism from k[x1,. .., x,]
to the ring of k-valued functions on A™(k), but this homomorphism is not always
injective.

2.1.1. Example. If k is finite of order ¢, then ¢ — x vanishes identically on &, and
so each of the polynomials z! — z; vanishes identically on A"(k), although they
are certainly a non-zero polynomials. Thus in this case the homomorphism from
klz1,...,x,] to functions on A™ is not injective.

We will see in Lemma 6.3.3 below that this homomorphism is injective if k is
infinite.

If f € kl[x1,...,z,] is non-zero, we define the degree of f to be the maximal
degree of all the monomials appearing with a non-zero coefficient in f.

Note that affine linear coordinate changes induces automorphisms of the k-
algebra k[z1,...,z,], and leave the degree of a polynomial unchanged.

2.2. Linear subspaces. One of the basic structures we can consider in affine space
is its collection of linear subspaces. A linear subspace of A™(k) = k™ is a subset of
k™ that is a translate by some element of k™ of a vector subspace of k™, i.e. a subset
of the form V + x for some vector subspace V' and some element =z € k.

The collection of linear subspaces of A™(k) is preserved under affine linear coor-
dinate changes.

2.3. Affine algebraic sets (first naive definition). In naive terms, an algebraic
subset of A™ is a locus of points cut out by a collection of polynomial equations.
For example, the conic sections, or conics, cut out by equations of the form

az? +bxy+cy’ +dr +ey+ f =0,

are examples of algebraic sets.
We will postpone our formal definition of algebraic set, since we will first provide
some motivation by remarking on the short-comings of this naive definition.

2.3.1. Example. If £ = R, and we consider the conic 2% 4+ y? = 0, then the only
solutions in R? are (x,y) = (0,0), although naively one might expect that a single
equation in two variables should cut out a curve.

2.3.2. Example. If k = R, and we consider the conic 22 4+ y? 4+ 1 = 0, then the set
of solutions in R? is empty.

Before introducing a formal definition of algebraic set in general, we will discuss
a particular case which is concrete and requires little theory, but is nevertheless
illustrative of many general feautres of the theory, namely the case of plane curves.

3. AFFINE PLANE CURVES

We focus on the case n = 2. Rather than writing k[z1, 23], we will follow standard
convention and write k[x,y] for the polynomial ring in two variables.
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3.1. The basic definitions.

3.1.1. Definition. We define an affine plane curve to be a non-constant polynomial
f € klx,y], thought of modulo scaling by non-zero elements of k*.

So an affine plane curve is given by a non-contant poylnomial f(x,y), and we
think of two polynomials as giving the same curve if they differ by a scalar.

We will often denote a curve (we will typically drop the adjectives affine and
plane in this section, since they are always implied) by C, and refer to (one of) the
equation(s) f that gives rise to it as the, or an, equation of C.

3.1.2. Remark. This definition, notation, and terminology may seem a little odd,
since according to our definition C'is nothing but f (thought of up to non-zero scal-
ing). However, we ulimately want to think of a curve as being something geometric,
while the equation cutting it out is something algebraic, and so we introduce no-
tation that emphasizes this. Of course, for this to have any content, we have to
introduce more concepts related to curves, and we begin to do so.

3.1.3. Definition. If f is an equation of the curve C, we write C'(k) := {(z,y) €
A%(k)| f(z,y) = 0}, and call this the set of k-valued points (or sometimes simply
the set of k-points) of the curve C. More generally, if K is any extension field
of k, we write C'(K) := {(z,y) € A*(K)| f(z,y) = 0}. (Note that these sets are
well-defined independently of the non-zero scalar ambiguity that is inherent in the
choice of f.)

This definition captures our intuition about what a plane curve should be: it
should be the set of points cut out by an equation f(x,y) = 0 in the plane.

However, as we saw in the examples above, for some choices of k and C, the set
C(k) can be a single point, or even empty! Thus we don’t want to define the curve
C' to be the set C(k) itself. We want the curve to be something which exists and
is interesting even if its set of k-points is very uninteresting (e.g. empty). As the
above definition suggests, we want to be able to consider the points of the curve not
just over k, but over extensions of k. The most expedient way to achieve these aims
is just to take the curve to be its equation (working modulo non-zero scalars, since
obviosly multiplying f by a scalar doesn’t change its zero locus over any extension
of k).

Later, we will prove the Nullstellensatz, which will show that the curve C' is
essentially® determined by knowing the sets C(K) for all extension K of C' (or even
just by knowing the set C'(K) for any one algebraically closed extension of k).

3.2. Examples of plane curves — lines and conics.

3.2.1. Example. Any linear (i.e. degree 1) polynomial is of the form ax + by + ¢,
where (a,b) # (0,0). We call the corresponding degree 1 curves lines.

Note that then C(k) is just a one-dimensional linear subspace of A2?(k). In this
case, one easily verifies (just by choosing two distinct points on the line) that C'(k)
determines C' (i.e. determines the polynomial ax + by + ¢ up to a non-zero scalar).

3T write “essentially” because in fact knowing C(K) for all extensions K, or even one alge-
braically closed extension K, allows us to determine the irreducible factors of an equation for C,
but not the powers with respect to which those factors appear in the equation.
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3.2.2. Example. We call degree two plane curves conics.

Suppose that k is algebraically closed, so that C'(k) contains a point. We may
make an affine change of coordinates so that this point is the origin (0,0), and then
the equation for C has the form f(x,y) = I3 + l2l3, where the [; are homogeneous
linear polynomials in z and y. (It is in obtaining the factorization of the quadratic
terms that we use the assumption that k is algebraically closed.)

Note that neither l5 nor I3 can vanish (otherwise f wouldn’t have degree 2), but
l; may. Note also that we may find an affine change of coordinates that takes any
two distinct lines to the standard coordinate lines (x = 0 and y = 0).

Using the preceding remarks, and considering the various possibilities for coin-
cidences among the [;, we find that (after an affine linear change of coordinates)
f(x,y) can be of five basic forms: zy—1, 22—y, xy, x(x — 1), 22. We refer to these
as a hyperbola, a parabola, two lines crossing, two parallel lines, and a double line.

3.2.3. Example. If £ = R, then there are further possibilities for conics, because
the quadratic term in f may not be factorizable. In this latter case, the quadratic
term can be reduced to 22 4+ y2 by a linear change of coordinates, and we find the
following additional possible conics (up to affine change of coordinates): z2+y%+1
(whose real points are empty, as we’ve seen), x2 +y? (whose real points are a single
point), and 22 4+ y2 — 1 (whose real points are an ellipse?).

Note that if we consider the complex points of these real conics, then the empty
case, and the case of the ellipse, both merge with the case of a hyperbola, while
the case of a single point becomes that of two lines crossing (with the single point
being the crossing point of the two lines).

3.3. Tangents and smoothness. Let C be a plane curve with equation f, and
suppose that (0,0) lies in C'(k), i.e. that f(0,0) = 0. This just says that f has no
constant term, and so we may write f = f; +...+ f4, where each f; a homogeneous
polynomial of degree i, and f; # 0 (so that d equals the degree of f).

3.3.1. Definition. We say that C is non-singular, or smooth, at (0,0), or that (0, 0)
is a smooth point of C, if fi # 0. In this case we say that the line with equation f;
is the tangent line to C at (0,0).

If f; =0 we say that C is singular at (0,0).

Since any point may be taken to the origin by an affine linear coordinate change
(indeed, by a translation), this definition may be applied to any point (zg,yo) €
C(k), by changing coordinates so that (z,y) becomes the origin.

The following lemma gives another description of smoothness and the the tangent
line, which doesn’t require moving the point to the origin.

3.3.2. Lemma. A point (xg,y0) € C(k) is a smooth point of C if at least one of the
0
partial derivatives == or —— is non-zero at (xg,yo). If this holds, then the equation

ox dy
for the tangent line to C' at (xo,yo0) is ax + yb + ¢, where

0 0 0 0
a = aTJ;(mo,yo), b= aijc(xo,yo)v and ¢ = —(afi(l“oyyo)xo + yi(xo’yo)yo)

Proof. This is more-or-less immediate when (zg,yo) = (0,0), and is easily checked
in general just by making a translation that moves (zg,yo) to (0,0). O

we say ellipse, rather than circle, because the former notion is invariant under affine linear
coordinate changes, while the latter is not.
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3.3.3. Remark. The lemma shows that the singular points on a plane curve C' with
0 0
equation f are the solutions to three simultaneous equations: f = a—f = 8—f =0
€z Y
This allows one to compute them in practice; it also suggests that they should
be fairly uncommon. (Morally, the plane has dimension two, and each equation
typically cuts down the dimension by one; so typically we might expect every point

to be non-singular. Later, we will make this kind of argument precise.)

The following discussion relates the tangent line to a plane curve at a smooth
point, as we have defined it above, to traditional idea that a tangent line to a curve
is one which should intersect the curve with “multiplicity > 1”.

We begin by defining the intersection multiplicity of a curve and a line at a point
that is common to both.

3.3.4. Definition. Let C be a plane curve, and let £ be a line, and let P € C(k)Né(k)
be a point of A%(k) lying on both C' and £. Assume that ¢ Z C (i.e. that the equation
of ¢ does not divide the equation of C'). Choose coordinates so that ¢ is cut out by
y = 0, and that P = (0,0). If f(x) denotes the image of f under the homomorphism
klx,y] — k[z] defined by y +— 0, then we define the multiplicity of the intersection
of C and ¢ at P to be the multiplicity of 2 = 0 as a root of f.

3.3.5. Remark. Note that since (0,0) is a point on C' by assumption, it is the case
that z = 0 is a root of f. Since ¢ € C, again by assumption, we see that f # 0.
Thus the multiplicity of intersection is finite and positive.

3.3.6. Remark. There is nothing important about our choosing coordinates so that
P = (0,0) and ¢ = y; this is just a convenient convention that allows us to give
a concrete definition. One could make a more intrinsic definition as follows: if we
let ¢ also denote an equation of ¢, and write A := k[z,y]/(¢) (the quotient of the
polynomial ring by the principal ideal generated by ¢), and write P = (a,b), then
the k-algebra A is isomorphic to a polynomial ring in one variable over k, and the
image of (xz — a,y — b) in A is a non-zero prime ideal, which we denote p. If we let
f denote the image of f in A under the canonical surjection, then the multiplicity
of intersection of £ and C at P is equal to the maximal power of p that divides (f).
(This is easily verified. Indeed, the change of coordinates in that we imposed in
Definition 3.3.4 just makes it easy to see that A is a polynomial ring (we identify
it with k[z]), and gives a concrete description of p (as the ideal generated by z).)

3.3.7. Lemma. If C is a plane curve, and P is a point in C(k), then C is smooth
at P if and only if there exists a line £ in A2 such that the intersection multiplicity
of £ and C at P equals 1. In this case, the intersection multiplicity equals 1 for
every line £ passing through P, except for the tangent line at P, whose intersection
multiplicity with C' at P is > 2.

Proof. We may change coordinates so that P = (0,0) and ¢ is given by y = 0, and
write f = f1 + .-+ + f4 as the sum of its homogeneous parts. Then, setting y = 0,
we obtain f = f; +--- + f, € k[z], and we see that the intersection multiplicity is
1 precisely if f; # 0.

If f1 = 0 then of course this is not possible. Hence if P is not a smooth point,
the intersection multiplicity of any line with P is > 2. On the other hand, if f; # 0,
so that C' is smooth at P, then we see that f; # 0 provided that f; is not a scalar
multiple of y, that is (in coordinate free terms) if ¢ and the tangent line to C' at P
don’t coincide. (]
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3.4. Tangent cones. We have seen in Lemma 3.3.7 that at a singular point P of a
curve C, every line through P intersects C' with multiplicity > 1. Still, if one looks
at some examples, it is clear that certain lines through P are “more tangent” to C
at P than others.

3.4.1. Example. Consider the graphs of y? = 2% + 22, y? = 23, and also y? =

1'3 — 1'2.

We capture this intuition with following definition.

3.4.2. Definition. Let C be a curve and P € C(k). Choose coordinates so that
P =(0,0), and write the equation f of C in the form f = fi+... fq, where each f;
is homogeneous of degree i. Let m be the least value of i such that f; # 0 (so that
m = 1 iff C is smooth at P). Then we call the curve with equation f,, the tangent
cone to C' at P.

3.4.3. Remark. If k is algebraically closed, then f,, factors as a product of m
linear factors, and so the tangent cone is a union of lines through (0,0) (possibly
with multiplicities). The reason we call it a cone is that such a union of lines is
invariant under scaling, and such objects are called cones. (Think about the usual
cone 22 + y? = 22 in space.)

4. PROJECTIVE SPACE

4.1. Basic definitions. The basic motivation for introducing projective spaces
are that affine spaces are incomplete, in a certain sense. In the context of algebraic
geometry (and, in particular, from the perspective of intersection theory) this is
discussed in some detail in Subsection 8.2 below. For now, we just remark that the
incompleteness of affine space, which is remedied by embedding affine space into a
corresponding projective space, which is complete, is analogous to the familiar fact
from topology that R™ and C™ (with their usual topologies) are not compact, but
can be realized as open subsets of the projective spaces RP™ and CP" respectively
— and these projective spaces are compact.

We motivate our definition of projective space by considering what is perhaps
the simplest example of “missing limits” in affine space, namely the missing “points
at infinity” in affine space. To this end, consider affine space A™(k) (with coordi-
nates x1,...,T,), but regard it as the hyperplane H in A"*!(k) (with coordinates
Zo,...,Tn) cut out by the equation zo = 1.

If we consider any line ¢ through the origin in £"*! which does not lie in the
plane zg = 0, then £ intersects H in precisely one point, and in this way we identify
A" (k) with a subset of the set of all lines through the origin in £"*!. Now imagine
varying ¢, and in particular, rotating it so that it ultimately lies in the plane xy = 0.
The point of intersection with H will then run off “to infinity” and disappear as
the line ¢ comes to rest in the plane xg = 0.

If we want this limiting point of intersection to exist, we have no choice but
to add points to A™(k). We do this in the simplest (and most tautological!) way
possible, namely, beginning with the identification of A™(k) with the set of lines ¢
through the origin of £"*! which do not lie in the hyperplane 2y = 0, we simply
define P (k) to be the set of all lines through the origin of k"*!.

4.1.1. Definition. If k is a field, we let P"(k) denote the set of lines through the
origin of k"*1.

Perhaps in a future itera-
tion, when I learn how to
add pictures, there will be
pictures here ...
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A line through the origin, which is to say a point in P"(k), is determined by
any non-zero point (zg,z1,...,2,) lying on it, and we write (xg : 1 : ... : @) to
denote the line through the origin that passes through such a non-zero point. Two
non-zero points (xg,1,...,%,) and (x5, z],...,2,) lie on the same line through
the origin if and only if (zg,x1,...,2n) = A(zy, 2}, ..., z,) for some X € k¥, and
so (o : w1 ¢ .ot xy) = (xy + 2y ¢ ... x) if and only if (xo,21,...,2,) =
Azp, xh, ..., x) for some A € 2%, We refer to the numbers xg, 1, ..., 2, as the
homogeneous coordinates of the point (zg : 1 : ... : x,) € P*(k); they are thus

well-determined up to simultaneous multiplication by a non-zero scalar.

4.1.2. Remark. The sets P*(R) and P"(C) are often denoted RP™ and CP"™ in-
stead (especially when they are considered as topological spaces with their usual
topologies).

Just as, in linear algebra, we can encounter vector spaces that are not equipped
with a canonical basis, it can also happen that we encounter projective spaces
without a canonical choice of homogeneous coordinates.

4.1.3. Definition. If V is a finite-dimensional vector space over k, then we let
P(V) denote the set of lines through the origin of V. We refer to P(V) as the
projectivization of V.

If V' has dimension n + 1, then choosing a basis of V', and hence an isomorphism
k"1 =V we obtain a corresponding identification P"(k) = P(V).

4.2. Linear subspaces of P". If V C W is an inclusion of finite-dimensional
vector spaces, then we obtain a corresponding inclusion P(V') € P(W). We refer to
P(V) as a linear subspace of W. In particular, the linear subspaces of P arise as
projectivizations of the vector spaces V C knt!.

Two points spane a uniquely determined line. Three points, not all colinear,
span a plane. Four points, not all coplanar, span a linear 3-space. Etc.

4.3. Hyperplanes and the dual projective space. A codimension one linear
subspace of P" is called a hyperplane. The equation for a hyperplane in P™ is of
the form

aoxo + - Ay =0,
where not all a; are zero, and the a; are determined up to a common non-zero scalar
multiple.

So we see that we may regard the hyperplanes in P” themselves as the points
[ap : - -+ : ay,) of an n-dimensional projective space which we denote by (P™)*, and
call the dual projective space to P™.

If we work in a coordinate free fashion, so that P" is obtained as the projectivia-
tion of a vector space V, then (P™)* is obtained as the projectivization of the dual
vector space V*.

4.3.1. Remark. If L C P" is a linear subspace of dimension d, then the collection
of hyperplanes that contain L form a linear subspace L* of (P™)* of codimension
d+1.

In invariant form, if P™ is the projectivization of V', and L is obtained from the
d + 1-dimensional subspace W C V, then L* is obtained as the projectivization of
W+ C V* (the annihilator of W in V*).
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5. PROJECTIVE PLANE CURVES

5.1. Lines in P2. As a special case of the formation of dual spaces, we remark
that the lines in P? are parameterized by a space which is itself a projective plane,
which we denote by (P?)*, and refer to as the dual projective plane (to our original
plane P?).

Concretely, the line with equation a X +bY +¢Z corresponds to the point [a : b : ¢].

5.2. The projective closure of an affine plane curve in P2,

5.2.1. Example. Consider the parabola y = 22 in A2. To compute points at
infinity, we pass to homogeneous coordinates z;xo = z3 and set #5 = 0. The only
solution is ¢y = 0 (in which case necessarily 1 # 0, and so can be scaled to be 1),
and so we have a unique point at infinity, namely [0: 1 : 0].

If we pass to the A2 which is the complement of z; = 0, with coordinates u = x/y
and v = 1/y (so that the point [0 : 1 : 0], which lies at infinity from the perspective
of the (z,y)-plane, now lies at the origin), then the equation for our curve becomes
(after clearing denominators in v) v = u?.

In particular it is smooth at the point (u,v) = (0,0) (which remember is our
point at infinity), with tangent line v = 0, which is precisely the line zo = 0, i.e.
the line at infinity (from our original perspective).

In summary, the parabola y = 2 has a single point at infinity, and it is tangent
to the line at infinity at this point.

5.2.2. Example. Consider the hyperbola 2y = 1 in A%2. To compute points at
infinity, we pass to the equation zox; = 23, set x5 = 0, and so find two points at
infinity, namely [0:1:0] and [1:0:0].

Let’s study what happens at the first of these. Just as in the previous example,
we pass to the (u,v) plane (the complement of x; = 0), where our curve becomes
u = v2. So again this is a smooth point, but now its tangent line is not the point
at infinity, but rather is the line u = 0, i.e. g = 0, which is the line x = 0 in our
original affine coordinates.

Now [0 : 1: 0] is precisely the point lying at infinity on this the line x = 0, and,
looking at the graph of xy = 1 we see that zy = 1 is asympotic to this line.

A completely analogous computation shows that [1 : 0 : 0] is also a smooth point,
with tangent line y = 0, which is the other asymptote of the hyperbola.

In summary, the hyperbola zy = 1 has two points at infinity, it is smooth at each
of them, and the tangent lines are precisely the two asymptotes of the hyperbola.

5.3. Dual curves. If C is a smooth® projective plane curve, then at each point P
of C' (defined over some field [ D k) we have the associated tangent line ¢, to C
at P, which is a point of the dual plane (P?)* (defined over the same field [).

If C is a line ¢, then of course tp = ¢ for all P € ¢(I) (and any | D k), so in
this case the collection of tp in fact consists of a single point. We will exclude this
somewhat degenerate case from now on.

5.3.1. Proposition. Suppose that deg C > 2. There is a curve C* in (P?)* with the
property that, for any algebraically closed field extension | D k, the set of tangent

5This means that C is smooth at each of its points. More precisely, it is enough to check
smoothness at all the points C'(I) for some algebraically closed field I containing k, e.g. an algebraic
closure of k; it then follows that C is smooth at every point P € C(l) for any field extension I
of k. We haven’t proved this yet, though.

Add a picture of this graph
some day. ..
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lines tp, as P ranges over the points of C (1), is precisely the set C*(1) of l-valued
points of C*.

Proof. We consider the affine chart of (P?)* consisting of lines of the form y =
mz + b, and show that the set of tp lying in this chart is cut out by a polynomial
equation in m and b. There are analogous computations for the two other affine
charts that, together with this one, cover (P?)*.

We have to determine when y = ma + b is of the form ¢p for some point P of C.
To this end, we substitute Y = mX + bZ into the equation F(X,Y,Z) for C, and
ask whether it has a double root (which is the condition for it to be tangent to at
least one of its points of intersection with C'). The polynomial f(X,mX + bZ, Z),
which is homogeneous in the two variables X and Z, has a discriminant A, which
is a polynomial in m and b, and which vanishes precisely when f(X,mX + bZ, Z)
has a double root. Thus indeed the condition for a line to be of the form tp is cut
out by a polynomial in the coefficients of the equation of the line. O

It’s not so clear (to me, at least) how to compute the degree of C* from the
description of its equation given in the preceding argument. However, we can use
a slightly different approach to compute its degree.

5.3.2. Proposition. If degC = d, then degC* = d(d — 1).

Proof. We will intersect C* with a typical line in (P?)*, and count how many
intersection points there are. A line in (P?)* corresponds to a point P in P?; points
on this line correspond to lines through P.

So we have to choose a point P in P2, and count the lines through P that are
tangent to C. It will be easier if the points at which these lines are tangent do
not lie at infinity, so we assume P is chosen so that none of the tangent lines to
the points at infinity of C' pass through P. (Since there are only finitely points at
infinity on C, there are only finitely many such lines, and so as long as k is infinite,
so that P2(k) is not the union of finitely many lines, this is possible.)

Now choose coordinates so that P = (0,0), let f(z,y) be an equation for (the
affine part of) C, and write f = f4+ fa—1 + -+ fo as the sum of its homogeneous
parts. The requirement that none of the tangent lines to the points through infinity
pass through 0 is equivalent to the requirement that fy_; is coprime to fy.

Now (0,0) lies on the tangent line through a point (x,yo) of C if and only if
z0 fz (0, Yo) + Yo fy(z0,yo) vanishes, and so we must count the number of solutions
to the simultaneous equations

f:()a xfx +yfy:07
or equivalently
fatfaatotfo=0,  d fat(d=1)far+ oot fi=0.

Now, subtracting d times the first equation from the second, we may rewrite these
as

fa+ fa1+---+ fo =0, fac1+2-faot+--(d—1)- f1 =0.
Thus we are considering simultaneous equations of degree d and d — 1, which by

Bézout’s Theorem (to be proved later) have d(d — 1) common solutions. Fur-
thermore, none of these common solutions lie at infinity (since fg and f4_1 are
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coprime).® Thus we find that there are d(d — 1) lines (counted with multiplicity)
through P = (0,0) that are tangent to C, and so C* has degree d(d — 1). O

5.3.3. Remark. If C is a curve with singularities, then one can still define a “dual
curve” C*, as the collection of lines which meet C' at a point with multiplicity
> 1. Provided that C contains at least one smooth point (which is true if e.g. k is
perfect and C is irreducible), this will in fact yield a curve, and its degree will be
d(d — 1). However, the resulting curve won’t be irreducible. The point is that if P
is a singular point on C, then any line passing through C' will have multiplicity > 1
at P, and so the entire line in (P?)* corresponding to P will lie in C*. In fact, this
line will appear in the equation for C* to some power > 1. (For an ordinary node,
it will appear with multiplicity two; for an ordinary cusp, with multiplicity three)

For this reason, the dual curve of a singular curve C' is usually defined to be the
dual curve in the above sense, but with all the extra multiple lines removed. The
degree of the dual curve is then called the class of C.

5.3.4. Remark. One can show that if P is a point on C', and tp is the tangent line
to C at P, then the line in (P?)* corresponding to P is tangent to C* at the point
corresponding to tp. Intuitively, this says that the dual curve to the dual curve is
the original curve.

This may seem impossible, because the degree of C* is d(d — 1), so how could
its dual have degree d? However, one has to be careful, because it will turn out
that (once d > 2) that C* is quite singular. It turns out that the class of C* (in
the sense of the preceding remark) is indeed d, and the dual of C* (again, in the
sense of the preceding remark, i.e. after throwing away all extra lines) does coincide
with C.

5.3.5. Example. If C' is a smooth cubic curve, then C* is a degree 6 curve with
9 cusps (corresponding to the 9 inflection points of C). The naive dual of C*
(i.e. the set of points in P? corresponding to lines in (P?)* that meet C* with
multiplicity > 1) is then of degree 30 = 6(6 —1). However, it contains 9 triple lines,
corresponding to the 9 cusps of C*. Once these are removed, we are left with the
original cubic curve C. (Note that 30 —9-3 = 3.)

5.4. The genus of a smooth complex curve. If £k = C and C is a smooth
projective plane curve of degree d, then C(C) is a compact connected Riemann
surface.

To compute its genus, we can project C' from some point P ¢ C' to a line. This
is a degree d morphism, which (by our computation of the degree of the dual curve)
has d(d — 1) branch points. The Riemann—Hurwitz formula then shows that, if g is
the genus of C'(C), we have

29— 2=—2d+d(d—1) =d(d—3),

and thus that
(d=1)(d-2)
9= 9 -

6Incidentally, this shows why we didn’t “cheat” when we eliminated the degree term from the
second equation. If we had considered the simultaneous solutions of the two original degree d
equations (here we are assuming that d # 0 in k, so that d - f4 is a non-zero term), they would
have had d spurious common solutions at infinity, and so only d? — d = d(d — 1) of the solutions
would have been meaningful — and these are the d(d — 1) solutions we have just introduced.
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This is a famous formula, which can be derived in many different ways. If one
knows this formula, then one can run the above argument backwards to determine
that deg C* = d(d — 1). (This is the approach taken in Hartshorne, for example;
see the exercises on pp. 304-5.)

5.5. The complete linear system of conics.
A projective plane conic has an equation of the form

(5.5.1) ao X2+ a1Y? +ayZ? + as XY + ayXZ + asYZ = 0.
It determines, and is determined by, the point
[a0:~~-:a5] EPS.

In other words, the space of conics is a P%; we call it the complete linear system of
conics.

Actually, below we will denote this space as (P%)*, because we will see that is
naturally identified with the dual space to a certain copy of P° that contains P2.

5.5.2. Base points. If P € P?(k), we may consider the sublinear system consisting
of conics that pass through P. An examination of (5.5.1) shows that this imposes
a linear condition on the point of (P%)* corresponding to the conic. In other words,
each point in P determines a hyperplane on the space of conics; we get a map

(5.5.3) P2 (k) — P (k)

to the dual space of the space of conics. (Since we have taken the space of conics
to be (P?)*, its dual space is just P5 itself.) This is called the 2-uple embedding of
P2. The following lemma shows that, among other things, it is an embedding.

5.5.4. Lemma. The map (5.5.3) is an embedding.

Proof. We have to show that given two distinct points P and @, we can find a conic
passing through one, but not the other. Choose a line ¢ passing through P but not
through @Q, and take the conic to be the double line ¢2. O

Note that the hyperplanes in P® are precisely the points of (P%)*, i.e. the conics.
If He is the hyperplane corresponding to a conic C', then one checks (just chasing
through the definitions) that the intersection of He with the image of (5.5.3) is
precisely (the image under (5.5.3) of) the set of points C(k) of the conic C.

In other words, the 2-uple embedding allows us to realize conics in P? as being
obtained by intersecting (the image of) P2 with hyperplanes in a higher dimensional
projective space (namely P?).

If P and @ are two distinct points in P2, then we can consider the sublinear
system of conics with base-points at P and @, i.e. passing through both P and Q.
The lemma shows that this is the intersection of two distinct hyperplanes in (P°)*,
and so is a codimension two linear subspace of (P%)*. It is dual, then, to a line in
IP?; this is precisely the line joining (the images under (5.5.3) of) P and @ in P®.

We can similarly impose base-points at three points (and so obtain a plane in P
— actually we have to check that these three points can’t be colinear; the following
proposition does this), and so on. (Once we impose four or more base-points, there
are non-trivial conditions to check to make sure that we actually cut down the
dimension by one for each extra base-point.)
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Write X to denote the image of P? under (5.5.3); it is a surface in P°.7

5.5.5. Proposition. (1) If P and Q are distinct points in X, then the line
joining P and Q contains no other points of X besides P and Q.

(2) If P, Q, and R are three distinct points in X, let I denote the plane spanned
by P, Q, and R. FEither (a) thought of as a points in P?, these points are
not, colinear, in which case the plane I1 meets X in no other point besides
P, Q, and R; or (b) the points P, Q, and R are colinear as points in P2,
in which case the intersection of I with X consists precisely of the image
under (5.5.3) of this line, and this image is a conic in 1.

Proof. To prove (1), we have to show that given three points, we can find a conic
containing the first two but not the third. If the three points are not collinear, take
the line through the first two and double it. If they are collinear, take the union
of a line through the first not containing the second and a line through the second
not containing the first.

To prove (2), we suppose given four points P, @, R, and S, so that any conic
containing the first three necessarily contains the fourth. Let ¢ be the line joining
P and Q. If ¢; is a line through R that misses S, then ¢¢; is a conic containing
P, @, and R, hence containing S. Thus S lies on . Interchanging the roles of @
and R, we see that the line through P and R also contains S. Thus in fact all four
points are collinear.

To check that the image of a line under (5.5.3) is a conic, make a direct compu-
tation. (|

5.5.6. Theorem. (1) If P, Q, R, and S are four points, no three of which are
collinear, then the space of conics passing through them forms a line in the
P° of conics. (It is called a pencil of comics.) It contains exactly three
singular conics, each of which consists of two lines crossing.
(2) If P, Q, R, S, and T are five points in P2, no three of which are collinear,
then there is a unique conic containing them, which is necessarily irreducible
(and hence smooth).

Proof. Part (2) of the preceding proposition shows that we cut the dimension down
by one for each extra base-point.

In the context of (1), we note that the only reducible (= singular) conics that
contain the four points are the three different unions of lines that can be obtained
by grouping the four points into pairs. O

5.5.7. Example. If we take k = R, we see that circles are precisely the conics
containing the points [1:¢: 0] and [1 : —i : 0] at infinity, and so we get the classical
result that a cirle is uniquely determined by three non-colinear points lying on it.

5.5.8. Remark. Any pencil of conics arises by imposing four base-points; this
follows from Bézout’s Theorem (to be proved later). From the fact that there are
three singular conics in a pencil, we deduce that the discriminant locus in (P°)* has
degree 3.

"We haven’t yet defined what we mean by a surface in P?, but in this case there are pretty
easy explicit equations cutting out X, so this shouldn’t be too confusing.
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6. AFFINE ALGEBRAIC SETS

6.1. Zeroes of equations and homomorphisms of k-algegras. Let k£ be a
field. If Q2 is an extension field of k, and if aq,...,a, € 2", then we let

Saal,...,an : k[:ﬂla e axn] — Q

denote the homomorphism defined by mapping each z; to the corresponding a;.
Clearly any k-algebra homomorphism ¢ : klz1,...,2,] — Q is of this form, for
some uniquely determined n-tuple ay, ..., a,. (One has a; = ¢(z;).)

If f is a polynomial over k in the variables z1,...,z,, then f(ai,...,a,) =0 if
and only if ¢4, . 4, (f) = 0if and only if f € kery,,,. . q4,. (Both assertions are
obvious; indeed, the second is the very definition of the kernel.)

If f1,..., fn is a collection of polynomials over k in the variables x1,...,x,,
and if I C k[zq,...,x,] denotes the ideal generated by the f;, then ay,...,a, is a
simultaneous solution of all the f; if and only if each f; € ker ¢,, .. 4, if and only
if I C @q,... ., if and only if ¢q, . 4, factors through klzi,...,z,]/I, to induce a
homomorphism k[z1,...,x,]/I — Q. (Again, this is all obvious.)

Putting together these observations, we get the following lemma.

6.1.1. Lemma. If, as above, f1,..., fn is a collection of polynomials over k in the
variables x1,...,xn, and I C kl[x1,...,x,] denotes the ideal generated by the f;,
then the assignment (a1,...,0n) = Qay,....a, induces a bijection

{(a1,...,a,) € Q"| fila1,...,an) =+ = fr(a1,...,a,) =0}

— {k-algebra homomorphisms ¢ : k[z1,...,z,]/] — Q}.

This lemma, simple but fundamental, is at the heart of the algebraic approach
to algebraic geometry.

6.2. Aside: the Hilbert Basis Theorem. The Hilbet basis theorem asserts that
any ideal in k[z1,...,2,] (where, as before, k is a field) is finitely generated. Thus
there is nothing special about the ideal I considered in Lemma 6.1.1; it could be
any ideal in k[xy, ..., x,)].

We recall the proof of Hilbert’s theorem here, in the more general form that
is usually considered, namely, that A[z] is Noetherian if A is. (This implies the
Noetherianess of k[x1, ..., z,] by an obvious induction on n, starting with the fact
that a field k is certainly Noetherian, containing as it does only two ideals.)

6.2.1. Theorem. If A is Noetherian than so is Alx].
Proof. Let I be an ideal in A[z]. Let J, C A be defined via
Jr = {a € A|a is the leading coefficient of an element of degree r in I} U {0}.

One checks that J,. is an ideal in A (exercise), and that J,. C J.;1 (exercise; hint:
consider multiplication by z). Thus J = |JJ, is an ideal in A (exercise), and
so is finitely generated, by the hypothesis that A is Noetherian. Thus for some
sufficiently large r, we have

JoCNhC--Cp=dp1=Jrpa="-.
Of course, each J; is also finitely generated (again using the Noetherianness of A).
We may and do choose, for each ¢ = 1,...,r, afinite set S; = {fi1,..., fis;} C T
of degree ¢ polynomials such that the leading coeflicients of the elements of S;
generate J;.
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One now checks that Sy U Sy U---U S, generates I. To see this, let I’ denote
the ideal generated by this union; certainly I’ C I. If 4 > r, define B; := 2" B,;
then each such B; lies in I’, and we see that B; is a set of degree 7 polynomials
whose leading coefficients generate J;, for every ¢ > 0 (taking into account the fact
that J; = J. when ¢ > r). Recalling the definition of the J;, we now see that
I =ABy+ AB; + ABy + --- C I', and so I = I, as claimed. In particular, the
ideal [ is finitely generated. O

6.3. Zero loci of ideals. We make the following basic definition.

6.3.1. Definition. If k is a field, I is an ideal in k[z1, ..., 2,], and Q is an extension
of k, then we write

Z1(Q) =A{(a1,...,an) € Q"| f(a1,...,a,) =0 for all f e I},

and refer to Z;(£2) as the zero locus of I in " (or in A™(Q); see Definition 6.3.2
below), or as the zero locus of I with values in Q.

The notation we have chosen for Z; suggests that we regard Z; as a functor on
the category of field extensions of k, and to this end, it is helpful to observe that
is indeed functorial in Q, in so far as if Q C ' is an extension (of extensions of k),
then there is an evident inclusion Z;(2) C Z; (V).

As was already noted in Subsection 6.1, if I is generated by f1, ..., f., then Z;(Q)
is the subset of (2™ consisting of simultaneous zeroes of each of the f;. Lemma 6.1.1
shows that Z;(€2) may also be identified with the set of n-tuples (ai,...,a,) for
which ¢q, ... 4, factors through k[z1,...,2,]/I. Thus the functors Z; encode the
concept of solving systems of polynomial equations.

6.3.2. Definition. When I = 0, we write A" rather than Z,. Thus
A™(Q) = Q™.
The notation here stands for n-dimensional affine space.

It is natural to ask to what extent the functor Z; determines the ideal I. (If
we know all the solutions to a collection of equations, can we recover the equations
that have been solved?)

The precise answer to this question is the subject of the Nullstellensatz, which
will take us some time to get to. However, we can at least say something about the
special case of A™.

6.3.3. Lemma. If I C k[zy,...,x,] is an ideal, and if k is infinite, then Z;(k) =
A™(k) if and only if I = 0.

Proof. The if direction is clear (and holds without any hypothesis on k), and so we
turn to proving the only if direction. More precisely, we will assume that I # 0, and
prove that Z;(k) # A™(k). To this end, choose a non-zero element f of I. Let £ be
the equation for a hyperplane Z;(k) such that £1 f. (Such an £ exists because k is
infinite, and so there are infinitely many homogeneous linear polynomials ¢, while
f has only finitely many irreducible factors.) Then the restriction of f to Zy(k) is
not identically zero. This restriction is a polynomial in n — 1 variables, and so by
induction we may find a point of Z,;(k) at which f does not vanish. In other words,
Zo(k) € Z1(k), and so in particuar, Z;(k) # A" (k). O

6.3.4. Corollary. If I C k[z1,...,zy) is an ideal, then Z;(Q) = A™(Q) for all
extensions 0 of k if and only if I = 0.
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Proof. The if direction being clear, we focus on proving the only if direction. Thus
we assume that Z;(Q) = A™(Q) for all extensions  of k, with the aim of showing
that I = 0. If k is infinite, this follows immediately from Lemma 6.3.3 upon taking
Q = k. In any case, k always admits an extension {2 which is infinite. If we let I
denote the ideal of Q[x1, ..., xz,] generated by I, then Z;(2) = Z;, () (this is true
for any choice of I), and so our assumption, together with Lemma 6.3.3, shows that
Io = 0. Since I C I, we find that I = 0 as well. O

6.4. Finitely generated extensions of fields. We need some facts and defini-
tions from field theory.

If Q/k is an extension of fields and a1, . .., a, € Q, then we say that the a; are mu-
tually algebraic independent, or simply algebraically independent, if the morphism
Car...an © k[T, ..., 2n] — Q is injective, i.e. has zero kernel. In this case, ¢q,... .,
induces an isomorphism between k[z1,...,z,] and the k-subalgebra klay,...,ay]

of Q generated by the a;, which then extends to an isomorphism between the field
k(xz1,...,2,) and the subfield k(aq,...,a,) of Q generated by the a; over k.

6.4.1. Lemma. Ifl/k is a finitely generated extension of fields, then there exist n
mutually algebraically independent elements aq,...,a, € | such that l is a finite
extension of k(ay,...,an).

Proof. Since [ is finitely generated over k, we may write I = k(ai,...,a, ) for
some collection of elements ai,...,a, € [. Choose a maximal algebraically inde-
pendent subset of these elements, which (after relabelling) we write as aq, ..., ay,.
Then, if ¢ > n, the elements ay,...,ay,a; are not algebraically independent, and
so we may find a dependence non-zero polynomial f in n + l-variables for which
fla1,...,an,a;) =0.Since aq, ..., a, arealgebraically independent, the polynomial
flat,...,an,Tnt1) € k(ax, ..., an)[Tnt1] is non-zero, and has a; as a zero. Thus a;
is algebraic over k(ai,...,a,), and so I = k(ay,...,an)[an+1,- -, ay] is finite over
k(ai,...,ap). O

In the context of the preceding lemma, we say that elements aq,...,a, form a
transcendence basis for | over k. The size of a transcendence basis (the quanity
n of the preceding lemma) is an invariant of the extension [/k, and is called the
transcendence degree of [ over k. We won’t prove this till later.

6.5. Universal domains. We say that a field 2 is a universal domain if it is
algebraically closed, and of infinite transcendence degree over its prime subfield
(which we denote by k). Since we won’t develop the theory of transcendence
degree in the non-finitely generated context, we note the following equivalent, but
more concrete, form of this definition: Q is a univeral domain if and only if it is
algebraically closed, and contains n elements that are algebraically independent
over kg, for any n > 0.

6.5.1. Example. (1) For any field k, an algebraic closure of k(z1,...,Zn,...)
(where 1, ..., 2y, ... is a sequence of variables) is a universal domain con-
taining k.
(2) The field C of complex numbers is a universal domain.

Example 6.5.1 (1) shows that any field may be embedded into a universal domain.

6.5.2. Lemma. Let Q) be a universal domain with prime subfield kg,
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(1) Ifk is any finitely generated field extension of ko, then there is an embedding
k— Q.

(2) Ifk C 1 is an extension of finitely generated field extensions of ko, then any
embedding k — ) may be extended to an embedding | — 2.

Proof. Tt suffices to prove (2); part (1) then follows as a special case, by replacing
k by ko and [ by k.

Since [ is finitely generated over k, by Lemma 6.4.1 we may find a finite number
of elements ay,...,a, € [ such that the a; are algebraically independent over k,
and such that [ is algebraic over k(aq,...,a,). Since 2 is a universal domain, and
since k is finitely generated over kg, we may find elements by, ..., b, €  which are
algebraically independent over the image of k. We may then define an embedding
k(ai,...,a,) — Q, extending the given embedding k <— €, by mapping a; to b;.
Since € is algebraically closed (being a universal domain), while [ is algebraic over
k(ai,...,ay), this may be extended to an embedding [ — €. O

We may bootstrap part (2) of the preceding lemma to an apparently stronger
result. To this end, we recall a lemma from commutative algebra.

6.5.3. Lemma. If A is a non-zero ring, then A contains a mazimal ideal.

Proof. An ideal I in A is proper if and only if 1 ¢ I. Thus if {I;} is any chain of
proper ideals in A (labelled by some totally ordered set), then the union |J, I; is
also a proper ideal in A. (Since 1 does not lie in any of the I;, it doesn’t lie in their
union either.) Zorn’s Lemma now shows that the collection of all proper ideals in
A contains maximal elements. (]

6.5.4. Proposition. If Q is a universal domain with prime subfield ko, and if A
is a non-zero finitely generated algebra over a finitely generated field extension k
of kg, then any embedding k —  may be extended to a map of k-algebras A — €.

Proof. Let m be a maximal ideal of A (which exists since A is non-zero). The
quotient A/m is then a finitely generated field extension of k, and so part (2) of
Lemma 6.5.2 shows that we may find an embedding A/m — Q extending the given
embedding of k. Composing this with the canonical surjection A — A/m gives the
desired map A — €. O

6.6. The Nullstellensatz for universal domains. We have shown above in
Lemma 6.3.3 that the zero ideal in k[z1,...,x,] is characterized by having ev-
ery point of A"(k) as a solution, for an infinite field k. Our goal now is to show
that the unit ideal in k[z1,...,2,] is characterized by having the empty set of so-
lutions, provided that we consider solutions valued in a universal domain. (Below,
in Subsection 11.1, we will prove the stronger result that the same remains true
provided that we consider solutions valued in an algebraically closed extension of k.
But we will need to develop more geometry before we can prove that result.)

6.6.1. Theorem. If I C k[x1,...,x,] is an ideal, and if Q is a universal domain
containing k, then Zr(Q) = 0 iof and only if I = k[xq, ..., zp].

Proof. The if direction is clear (for any choice of extension  of k, universal domain
or not), so we focus on proving the only if direction. That is, we assume that
Z1(Q) = 0, and we will show that [ is the unit ideal.
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Let ko denote the prime subfield of k (and hence of 2). By Hilbert’s Basis The-
orem we know that [ is finitely generated, say by fi,..., f;, and so we may find a
subfield &’ of k, finitely generated over kg, such that fi,..., f. € ¥'[z1,...,2,]. Let
I’ denote the ideal in K'[z1,...,x,] generated by fi,...,f.. Clearly Zp(Q) =
Zr(2) (just using that I’ and I have the same set of generators), and hence
Zp () = 0. Lemma 6.1.1 therefore implies that there are no k’-algebra ho-
momorphisms k'[z1,...,2,]/I" — Q. It now follows from Proposition 6.5.4 that
K'[x1,...,2,]/I" must be the zero k'-algebra, i.e. that I’ must be the unit ideal,
and so in particular that 1 € I’. Since I' C I, we find that 1 € I, and thus that I
is also the unit ideal, as required. [l

6.7. Consequences of the Nullstellensatz. We say that a field ) satisfies the
Nullstellensatz if the conclusion of Theorem 6.6.1 holds, for any subfield k of Q, i.e.
if for any subfield £ C Q and any ideal I C k[z1,...,z,] (with n arbitrary), we
have that Z;(Q) = 0 if and only if I is the unit ideal. Clearly, it actually suffices to
consider the case when k = ) (since we may replace I by the ideal in Q[z1, ..., z,]
that it generates, without changing the set Z;(Q)).

As already remarked, we will prove later that a field satisfies the Nullstellensatz
if (and only if) it is algebraically closed.

In this subsection, we describe the precise extent to which Z;(€2) determines the
ideal I, under the assumption that €2 satisfies the Nullstellensatz.

6.7.1. Definition. If I an ideal in a ring A, then rad(I) (the radical of I) is the
ideal of A defined by

rad(I) := {a € A|a™ €I for some N}.
Note that I C rad([), and rad(rad([)) = rad(I).
Clearly for an ideal I in k[z1,22,. .., 2y,], we have Ziq1) () = Z1().

6.7.2. Theorem. If k C ) is an extension of fields, and ) satisfies the Nullstellen-
satz, then, for any ideal I C k[z1,...,zy], a polynomial f € k[z1,...,x,] vanishes
identically on Z1(Q) if and only if f € rad([).

Proof. We have already observed that if direction holds (without any assumption
on ). Thus we turn to proving the only if diretion, and, to this end, we suppose
that f vanishes identically on Z;(€2).

We define J C k[zy,...,2,,y] to be the ideal generated by I together with
the element 1 — fy. The assumption that f vanishes identically on Z;(Q) is im-
mediately seen to imply that Z;(Q2) = @. Our assumption that Q satisfies the
Nullstellensatz then implies that J is the unit ideal of k[z1,...,z,,y]. If we set
A :=k[zy,...,2,]/1, then we may rephrase this as saying that 1 — fy generates the
unit ideal of A[y]. Lemma 6.7.3 below implies that f is nilpotent in A, and thus
that f € rad(I), which is what we wanted. O

6.7.3. Lemma. If A is a ring and a € A, then the polynomial 1 — ay is a unit in
Aly] if and only if a is nilpotent in A.

Proof. We may embed Aly] in the power series ring A[[y]], and the usual computa-
tion with geometric series shows that 1 — ay is a unit in A[[y]], with

(l—ay) ' =1+ay+a®y+- - +a"y+---.
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Thus we see that 1 — ay is a unit in Afy] if and only if this geometric series is in
fact a polynomial if and only if a is nilpotent, as claimed. (Il

6.7.4. Remark. The proof of Theorem 6.7.2 is known as the Rabinowitz trick.
The following result is an immediate corollary of Theorem 6.7.2.

6.7.5. Corollary. If k C Q is an extension of fields, and () satisfies the Nullstellen-
satz, then, for any ideals I,J C k[x1,...,xz,], we have that Z;(Q) C Z;(Q) if and
only if rad(I) D rad(J).

6.7.6. Corollary. If k is a field satisfying the Nullstellensatz, then the maximal
ideals of k[x1,...,x,] are precisely the ideals of the form (x1—ay,...,Tn —ay), for
some n-tuple (a1,...,a,) € k™.

Proof. Clearly any such ideal is maximal. Conversely, if m is a maximal ideal,
write Q = k[z1,...,2,]/m. Since Z,(Q2) is non-zero (tautologically), we conclude
that Zy (k) is non-zero. If (aq,...,a,) is a point of Zy,(k), then we see that (z1 —
a1,...,Ty — Q) (which is the kernel of ¢, 4, ) contains m, and thus these two
ideals coincide (since m is maximal by assumption). O

6.8. The Zariski topology. We suppose that k& C € is an extension of fields, and
that Q) satisfies the Nullstellensatz.

6.8.1. Definition. The Zariski topology on A™(Q) over k is defined by declaring
the closed subsets to be those subsets of the form Z;(Q) for ideal I C k[z1,...,2,].
We write A7, (©) to denote A™(Q) equipped with its Zariski topology over k.

6.8.2. Remark. We note that
(1) Zr(QUZ;(Q) = Z1;().
(2) N Z1.(Q) = Zs, 1,(Q).
(3) Zk[an,“.,wn](Q) =0.
(4) Zo(©) = A™(Q).
Thus the Zariski topology is indeed a topology.

6.8.3. Remark. The Zariski topology on A7, (©2) depends on the choice of k (which
is why we include & in the notation). For example, the singleton {i} is closed in
A}C((C) (it is the zero locus of the polynomial x — 4 € Clz]), but is not closed in

A}R((C); its closure in A}R((C) is equal to {i,—i} (this set being the zero locus of
the polynomial 22 + 1 € R[z]).
The Zariski topology on A’]k(ﬂ) induces a topology on each Z;(2), which we

refer to as the Zariski topology on Z;(Q2). Corollary 6.7.5 shows that the closed
subsets of Z;(€2) are precisely the subsets Z;(2), as J ranges over ideals J C rad(I).

6.8.4. Definition. We refer to the sets Z;(2), endowed with their Zariski topology,
as affine algebraic sets

7. INTERLUDE ON TOPOLOGY

Here we will discuss irreducibility, dimension, etc..
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8. PROJECTIVE ALGEBRAIC SETS

8.1. The incompleteness of affine algebraic sets. A technical difficulty with
affine algebraic sets is that (when they are not just a finite union of points) they
are not complete, in a sense that the following example should convey.

8.1.1. Example. Consider the intersection of the locus xy = 1 and the locus y = tx
(where t is, to begin with, a non-zero parameter). Clearly, the intersection is equal
to the set {(x,tx)| 2% = 1/t}, and so consists of two points. However, if we consider
what happens as ¢ — 0 (in an informal sense, for the moment), we see that these
two points of intersection disappear: the loci xy = 1 and y = 0 do not intersect.

There is another way to phrase the incompleteness described in the preceding
example which is technically more precise (it doesn’t appeal to notions of conver-
gence and limit which make little or no sense when k and €2 are not equal to C),
if slightly less intuitive. Namely, rather than thinking of ¢ as a parameter, in some
slightly unspecified sense, just regard y = tx as an equation in three variables z, v,
and ¢. Then we can consider the affine algebraic set Z,y,_1,—12)(2) C A?k(ﬂ)

Projection onto the third variable (i.e. projecting onto the t-line) gives a map
A:/)’k Q) — A}k(Q)7 and the fibre of this projection over any particular value of ¢
is then equal to the intersection of the loci cut out by the equations zy = 1 and
y = tz (with ¢ now taken to be the particular value under consideration). Our
previous vague remarks about a limit of intersections disappearing as t — 0 can
now be made precise in the following way: the image of Z(,, 1,z (€2) under this
projection, which is equal to {t € AY(Q) |t # 0}, is not Zariski closed. (Its Zariski
closure is equal to all of A'(Q), but it does not contain the point ¢ = 0 of this
closure.)

Our goal in introducing projective space and projective algebraic sets, first and
foremost, is to find a setting in which the incompleteness problems of the type just
described are eliminated. The technical expression of the completeness of projective
space will be given in Theorem 8.6.1 below; a quick glance at the statement of that
theorem will show that it is phrased in terms of certain projections being closed
maps in the Zariski topology. (It then becomes a bit of an art to learn how to apply
the completeness property for projective spaces, described in such terms, to deal
with problems of “limits” (intuitively understood) such as the one described in the
above example.)

8.2. Projective space. We begin by introducing projective space (thus repeating
some of the discussion of Subsection ?7?), and as motivation, we consider perhaps
the simplest situation of “missing limits”, namely missing points at infinity in affine
space. To this end, consider affine space A™(2) (with coordinates x1, ..., 2, ), but
regard it as the hyperplane H in A"*1(Q) (with coordinates o, ..., z,) cut out by
the equation zg = 1.

If we consider any line ¢ through the origin in Q"*! which does not lie in the
plane zg = 0, then £ intersects H in precisely one point, and in this way we identify
A" () with a subset of the set of all lines through the origin in Q"!. Now imagine
varying ¢, and in particular, rotating it so that it ultimately lies in the plane xy = 0.
The point of intersection with H will then run off “to infinity” and disappear as
the line ¢ comes to rest in the plane x¢ = 0.
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If we want this limiting point of intersection to exist, we have no choice but to
add points to A™(2). We do this in the simplest (and most tautologicall) way
possible, namely, beginning with the identification of A™({2) with the set of lines ¢
through the origin of Q™! which do not lie in the hyperplane zo = 0, we simply
define P"*(9) to be the set of all lines through the origin of Q"1

8.2.1. Definition. If Q is a field, we let P™(£2) denote the set of lines through the
origin of Q" *1,

A line through the origin, which is to say a point in P*(2), is determined by
any non-zero point (zg,Z1,...,&,) lying on it, and we write (zo : 1 : ... : x,) to
denote the line through the origin that passes through such a non-zero point. Two
non-zero points (xg,21,...,%,) and (x(,2},...,2}) lie on the same line through
the origin if and only if (zg, z1,...,2n) = A(zg, 2, ..., z,) for some A € Q*, and
so (ot @1+ ... xy) = (g &)+ ... xy) if and only if (zo,x1,...,2,) =
Maxp, ah, ..., 2h) for some A € Q. We refer to the numbers xg, 1, ..., 2, as the
homogeneous coordinates of the point (xg : 21 : ... : z,) € P"(Q); they are thus
well-determined up to simultaneous multiplication by a non-zero scalar.

8.3. Zero loci of homogeneous ideals. Since points in P"(2) are described not
by well-defined coordinates, but only by coordinates that are well-defined up to a
simultaneous non-zero scalar multiple, it doesn’t make sense to evaluate an arbitrary
element f € k[xo,...,zy] at a point of P"(Q).

However, if f € k[xg,...,x,] is homogeneous, say of degree d, then

FAz0,s .. s Azn) = N f (T, ..., T0)
for any A € Q*, and so the vanishing or not of f at a point of P™(Q) is well-defined,
independently of the choice of homogeneous coordinates.

8.3.1. Definition. For each d > 0, we write k[xo,...,2,]qs to denote the k-vector
subspace of k[zg,...,x,] consisting of homogenous polynomials of degree d. (The
dimension of k[zg,...,x,] is equal to ("Zd))
We regard k[zg,...,x,] as a graded ring via the decomposition
klxo,...,zn] = K[z, ..., 200 ® k[xo, ..., 201 & - B K[z, ..., Tp]a D .

8.3.2. Definition. We say that an ideal I C k[xo,...,z,] is homogeneous if the
inclusion @7, (I N klzo, . - . ,xn]d) C I is an equality, or, equivalently, if I can be
generated by homogenous polynomials.

Studying the simultaneous zero loci of collections of homogeneous polynomials
is evidently the same as studying the zero loci of homogeneous ideals.

The following result gives the analogue of Theorem 6.6.1 in the context of ho-
mogeneous ideals and projective algebraic sets.

8.3.3. Proposition. Suppose that Q) satisfies the Nullstellensatz. Then for a homo-
geneous ideal I C k[zo,...,xy], the zero locus of T in P™(Q) is empty if and only if
Iy = Kk[zo,...,xn]a for some d (and hence for all sufficiently large d).

Proof. The zero locus of I in P™*() is empty if and only if the zero locus of I
in A"t is either empty or equal to (0,...,0). In the former case, Theorem 6.6.1
implies that I = k[xo,...,2,], and so Iy = k[zo,...,z,]q for every d > 0. In the
latter case, since {(0,...,0)} is the zero locus of the ideal (zo,...,x,), it follows
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from Corollary 6.7.5 that I contains some power of the ideal (xg,...,z,), and
elementary manipulations show that this is equivalence to showing that I contains
k[zo, ..., 2n]q, for some dy > 0, and hence for all d > dy (since I is an ideal). Since
I is homogeneous, this in turn is equivalent to having Iy = k[zg,...,zy]q for all
d > dy, as required. O

8.4. Zariski topology and projective closure.

8.5. The products A™ x P™. Let x1,...,%,, be coordinates for A™, and let
Yo, - - -, Yn be homogeneous coordinates for P*. We can define Zariski closed subsets
of A™(Q) x P"(Q) using polynomials that are of arbitrary nature in the = variables,
and homogeneous in the y variables.

Equivalently, we may may use ideals I C k[x1,...,Zm, Y0, .., Yn] that are ho-
mogenous with the respect to the y variables.

8.6. Elimination theory. The following result, known as the main theorem of
elimination theory, although it may seem technical, is the key result which formu-
lates the “completeness” of projective space.

8.6.1. Theorem. Suppose that the field ) satisfies the Nullstellensatz, and let I C

klz1, ..., Zm,Y0,---,Yn] be an ideal, homogeneous in the y;. If Z;(Q) denotes the

zero locus of I in A™(Q2) x P*(Q), then the image of Z;(Q2) under the projection
A™(Q) x P*(Q) — A™(Q)

is Zariski closed over k.

Proof. Let m: A™(Q) xP*(Q2) — A™(Q) denote the projection onto the first factor.
To show that 7 (Z;(€2)) is closed, we have to show that if (a1,...,amn) & 7(Z;(2)),
then there exists a polynomial f such that f(ai,...,am,) # 0, and such that if
f(b1, ... bm) #0, then (b,...,by) & 7(Z1(2)).

Since (a1, ..., an) € 7(Z1(Q)), it follows from Proposition 8.3.3 that

sDa17~n,am (Id) = k[y07 e ﬁUn}d

for some sufficiently large value of d. Thus, if we let {f;} be a basis for k[yo, - . ., Yn]d,
then we may find elements {g;} of Iy for which g, . 4. (9:) = fi, and we may
further write

g1 bit
AE
Im fm
for some matrix M with entries in k[z1,...,zy]. If we set f := det M, then f
is an element of k[z1,...,x,,], whose value at (a,...,a;) is non-zero (indeed,

©ay,....an (M) is the identity matrix, and so f(a1,...,an) = 1), and with the prop-
erty that f(b1,...,b,) # 0 implies that oy, . b, (Id) = k[yo,- .-, Yn]a, and hence
that by,...,b;, ¢ 7T(Z[ (Q)) This completes the proof. O

Here is one way to phrase this result (which in fact reflects that way the we
proved it). Namely, if X C A™(Q) x P*(Q) is a closed subset, and ¢ : X — A™(Q)
denotes the natural projection (i.e. projection from A™(€2) x P"(£2) onto the first
factor), then if P € A™(Q) is such that ¢ ~!(P) is empty, then there is an open
subset U C A™(Q) such that ¢~ !(U) is empty. (Indeed, the theorem assures us
that ¢(X) is closed, and the assumption that ¢~1(P) = ) is just another way of
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saying that P ¢ ¢(X). Thus we can take U to be the complement of ¢(X) in
A™(Q).)

We now give an application of elimination theory to prove a strengthening of
this result, with the condition of being empty replaced by that of being finite.

8.6.2. Corollary. Suppose, as in the above discussion, that we are given a closed
subset X C A™(Q) x P*(Q), and let ¢ : X — A™(Q) denote the natural projection.
If P € A™(Q) has the property that its preimage ¢~ (P) is finite, then we may
find an open neighbourhood U of P in A™(Q) such that for each point Q € U, its
preimage o~ 1(Q) is finite.

Proof. We may as well assume that k = 2, and in particular that & is infinite.

Observe that ¢~!(P) is equal to the intersection X N ({P} x P™(R2)). Since this
set is finite, and since k is infinite, we may find a hyperplane H C P"(Q2) such that
o~ Y(P) is disjoint from {P} x H.

Now consider the intersection X N (A™(2) x H). This is a closed subset of
A™(Q) x P*(Q2) (being the intersection of two closed subsets), and so by Theo-
rem 8.6.1 its image under ¢ is closed. By the choice of H, this image doesn’t con-
tain P, and so its complement U is an open neighbourhood of P. If Q) € U, then
we see that ¢~ 1(Q) = X N ({Q} x P™()) is closed in {Q} x P"() (being the inter-
section of the latter with the closed set X), and is contained in {Q} x (P"(Q)\ H).

Note that, for an appropriate choice of coordinates, P™"(Q2) \ H = A™(Q), and so
we are left with following problem: to show that a closed subset of P™(2), which is
contained in A™(2), is finite. We leave this as an exercise. (Later we will prove a
more general version of this statement.) g

8.6.3. Remark. The analogues of Theorem 8.6.1 and Corollary 8.6.2, in which
P™(Q) is replaced by A™(Q), are false.

We already gave a counterexample to Theorem 8.6.1 for affine space in the dis-
cussion of Subsection 8.1. Here we give another, simpler one. Namely, if we consider
the projection

A%(Q) = AY(Q) x AY(Q) — AL (Q)
(projection onto the first coordinates), and let Z = {(z,y)xy = 1}, then Z is a
closed subset of A?(Q2), but its image in A'(Q) is equal to the subset {x |z # 0},
which is not Zariski closed. Thus the main theorem of elimination theory doesn’t
hold when projective space is replaced by affine space.

If we consider a slight variation of this, namely the projection

A3(Q) = AL(Q) x A%(Q) — AL(Q),

and let X = {(z,y, z) zy = 1}, then, letting ¢ : X — A1(Q) denote the projection
(as above), we see that »~1(0) is empty (and hence finite), while for any = # 0,
we have o~ 1(z) = {(x,1/x,2)z € Q}, which is infinite. Thus the analogue of
Corollary 8.6.2 is also false if we replace projective space by affine space.

9. MORPHISMS AND THE CATEGORY OF QUASI-PROJECTIVE ALGEBRAIC SETS

Already in the previous section, in the discussion of elimination theory, we found
ourselves discussing products, and certain natural maps that arise when thinking
about products (such as projections). It is convenient to introduce some categorical
language for discussing these sorts of things.
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9.1. Quasi-projective algebraic sets. So far, we have introduced three kinds
of algebraic sets: affine algebraic sets (Zariski closed subsets of A™({2)), projective
algebraic sets (Zariski closed subsets of P*(£2)), and a kind of hybrid object, namely
Zariski closed subsets of A™(Q) x P*(Q).

Note that A™(Q) is a Zariski open subset of P™(§2) (it is the complement of the
hyperplane at infinity), and so any affine algebraic set is an open subset of its
projective closure (i.e. its Zariski closure in P"((2)).

We will see soon (in Subsection 10.1 below) that A™(Q) x P"(Q) may also be
regarded as an open subset of a projective algebraic set.

Thus the following definition incorporates, and extends, all our previous nota-
tions of algebraic set.

9.1.1. Definition. We say that a subset X C P*(Q) is a quasi-projective algebraic
set over k if there is a Zariski closed subset (i.e. a projective algebraic set) over k,
say Z C P™*(Q), such that X is a Zariski open subset of Z.

9.1.2. Remark. If S is any topological space, then we say that a subset X of S is
locally closed if there is a closed subset Z C S such at X is an open subset of Z
(when Z is given its induced topology). One easily checks that we may take Z to
be the closure of X, i.e. that X is locally closed in S if and only if it is an open
subset of its closure in S.

The preceding definition may then be rephrased as follows: the quasi-projective
algebraic sets are precisely the subsets of P™(2) that are locally closed in the Zariski
topology.

9.1.3. Remark. If X is any quasi-projective variety, and P € X, then we choose
coordinates so that P € X NA™(Q) C X. (Just choose coordinates so that the
hyperplane at infinity doesn’t contain P.) Since A™(f2) is an open subset of P"((2),
we see that U := X N A™(£) is an open subset of X. Thus any point of a quasi-
projective algebraic set has an open neighbourhood which is contained in A™(2)
(for some appropriate choice of coordinates on projective space).

We always endow a quasi-projective algebraic set with its Zariski topology, i.e.
the topology induced on it by the Zariski topology on the projective space that
contains it.

We also remark that an easy argument shows that if X is a locally closed subset
of a topological space S, and Y is a locally closed subset of X (when X is endowed
with its induced topology), then Y is a locally closed subset of S. Thus locally
closed subsets of quasi-projective varieties are again quasi-projective varieties.

9.2. Morphisms. To define a category, one must define a collection of objects, and
one must define the morphisms between them. The objects of our category will be
the quasi-projective algebraic sets. In this subsection we define the morphisms, and
establish their basic properties.

9.2.1. Definition. Let X and Y be quasi-projective algebraic sets, say with X being
locally closed in P (€2) and Y being locally closed in P™(€2). We say that a function
@ : X — Y isamorphism from X to Y if it satisfies the following condition: for each
point P € X, there exists an open neighbourhood U of P in X which is contained
in A™(Q) (for some suitable choice of coordinates on P™(§2) — see Remark 9.1.3)
and an open neighbourhood V of ¢(P) in Y which is contained in A™(€2) (for some
suitable choice of coordinates on P"(2) — again, see Remark 9.1.3), such that



INTRODUCTION TO ALGEBRAIC GEOMETRY 25

¢(U) C V, and such that the restriction ¢y : U — V (which is now a function
from a subset of A™(Q) to a subset of A™(Q2)) admits a formula of the form

(9.2.2) P, ) = (fl(xl"“’xm)7..., f"(xl"""r’")),
q1(z1, ..., Tm) In(T1, .., Tm)
where the f; and g; are elements of k[x1, ..., 2], and furthermore the polynomials

g; are nowhere zero on U (so that the preceding formula makes sense as a function
from U to A™()).

9.2.3. Remark. In the context of the preceding definition, we have to choose co-
ordinates on P™(Q) and P" (), and open neighbourhoods U of P and V of ¢(P),
such that ¢(U) C V and such that U C A™(Q) and V' C A"(2). The condition for
¢ to be a morphism is then expressed in terms of the coordinates on A™ () and
A™(Q); namely, ¢y has to be expressible in terms of rational functions in these
coordinates whose denominators are nowhere zero on U.

Now, if U and V have been chosen, it might be that there is another choice of
coordinates on P"(Q2), or on P"(2), so that U also lies in A™(Q), or V also lies in
A™(Q), with respect to these new coordinates. Our goal in this remark is to observe
that if we change coordinates in this way in either the source or target of ¢, then
it is still given by a formula of the form (9.2.2).

We begin by supposing that the open set U lies in more than one copy of affine
space; i.e. that there is more than one hyperplane that is disjoint from U. Suppose
that H is the hyperplane at infinity, so that U C A™(2) = P™(Q)\ H. Suppose now
that H’ is another hyperplane (defined over k) disjoint from U, so that P™ () \ H’
is another copy of A™(Q) containing U.

We may choose coordinates z1, ...,z for (the first copy of) A™(Q) so that
H' NnA™(Q) is cut out by 1 = 0. Then y; = 1/21,y2 = 22/T1, ..., Ym = Tm /21
will be (the restriction to P™ \ (H U H') of) affine coordinates on P™(Q2) \ H'.

Now suppose that

_(file, ) falzr, .o, 2m)
(1, Tm) = e
g1(z1, ..., Tm) gn(T1, ..., Tm)
is a formula for ¢y in terms of the coordiantes x1,. .., Zy,. (Note that the con-

dition of being expressible in this manner is invariant under affine linear changes
of coordinates on the source, so ¢ is indeed expressible in this manner.) Then
substituting z1 = 1/y1, 22 = y2/y1, ..., Tm = Ym /Y1, we find the formula

(Y, 92/y1, - Ym/ Y1) Jn(L/y1,92/y1, - - - ,ym/yl))
a1 (L/y1,v2/y1, - ym/v1) " gn (L Y1, 92/ y1s - o Ym /Y1)

for 7 in terms of the coordinates yi, ..., ym. Since y; is nowhere vanishing on U,
we see that we may rewrite this formula as

w(yl,-n,ym):(

@(yl,...,ym):(fl(yl""vym) fn(y17'~'7ym)>7

W ym) T g W Ym)

where f/,g; € kly1,...,Ym], and the g} are nowhere vanishing on U.

The conclusion of this analysis is that if ¢ : X — Y is a morphism, and U is an
open subset of X, contained in A™(Q), on which ¢ is given by a formula involving
rational functions in the coordinates on A™(§2) as in Definition 9.2.1, then if we can
embed U into any other copy of A™(Q2) contained in P™(Q2) (by choosing a different
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hyperplane at infinity) then ¢ will be equally well given by a formula involving
rational functions of these new coordinates.

A similar analysis applies if the neighbourhood V' of ¢(P) is contained in two
different copies of affine space inside P"(Q2) (given by making two different choices
of the hyperplane at infinity). Certainly, if we compose a formula of the form (9.2.2)
with an affine linear change of coordinates on the target, we obtain another formula
of the same form (whose denominators are again nowhere vanishing on U). Now,
after making such a linear change of coordinates, we may assume that the affine

coordinates, say ui,...,u,, in the first copy of A™(2) are related to the affine
coordinates in the second copy, say vi, ..., vy, via the formula
v = 1/ ug, v = ug/uy, ..., 0, = Up/uq.

Then in the new coordinates, ¢ will be given by the formula

(T, ..y Tm)
B (gl(xl, cesTm) falzr, . zm)gi(Tr, ., Tm)
CNfi(xn, ) fi(T, ) g2(Tr, - T
falzy, .oy xm)gr (21, .. ,xm))
U A, gn(T, )

Our assumption that V' is not contained in the hyperplane u; = 0, together with
the assumption that p(U) C V, ensures that f; is nowhere vanishing on U. Thus
this is again an expression for ¢ in terms of rational functions whose denominators

are nowhere vanishing on U.

)

The preceding remark will be useful in proving part (2) of our next result, which
records some basic properties of morphisms.

9.2.4. Proposition. (1) If o : X — Y is a morphism of quasi-projective vari-
eties, then @ is continuous.
(2) If o: X =Y and ¢ : Y — Z are morphisms of quasi-projective varieties,
then the composite vy : X — Z is again a morphism of quasi-projective
varieties.

Proof. ([

The following result follows essentially by definition. It expresses the fact that
being a morphism is a local property.

9.2.5. Lemma. If ¢ : X — Y is a function between quasi-projective algebraic sets,
and each point P € X has an open neighbourhood U such that o\ is a morphism,
then @ itself is a morphism.

To motivate our next lemma, recall first the following easy fact from topology:
if S and T are topological spaces, and T” is a subset of T endowed with the induced
topology, and ¢ : S — T is a function, then ¢ is continuous if and only if the
composite vy is continuous, where ¢ : 7" < T is the inclusion. Less formally, the
function ¢ is continuous as a map to 7" if and only if it is continuous when regarded
as a map to T. (This is immediately verified just from the definition of the induced
topology.)

In general, an arbitrary subset of a quasi-projective algebraic set is not a quasi-
projective algebraic set, and we won’t be able to prove a perfect analogue of the
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preceding result. However, we have observed that a locally closed subset of a quasi-
projective algebraic set is again a quasi-algebraic set, and the following result then
gives an analogue of the preceding topological result in the context of such locally
closed subsets.

9.2.6. Lemma. Let X be a quasi-projective algebraic set, let Y be a locally closed
subset of X (so that'Y is also a quasi-projective algebraic set), and let ¢ : Y — X
denote the incluston.
(1) ¢ is a morphism.
(2) If Z is any quasi-projective algebraic set and ¢ : Z — Y is a function, then
@ s a morphism if and only if the composite 1p : Z — X s a morphism.

Proof. Claim (1) is immediate, since if P is any point of Y, and U is any neighbour-
hood of P contained in an affine space of P () (this being the projetive space con-
taining X and Y'), then ¢ is given on U by the formula ¢(z1,...,2,) = (21,...,2p).

If p: Z — Y is a morphism, we then see that tp is a composite of morphisms,
hence is a morphism by the preceding lemma, and so one direction of claim (2)
is also proved. Finally, suppose that ¢ : Z — Y is a function for which the
composite tp is a morphism. Then, by definition, for any point P € Z there are
open neighbourhoods U of P and V of tp(P) = ¢(P) in Z and X, each which is
contained in an affine space, so that tp(P) is given by a formula

(@, Tg) folze, o Tm)
(T, ) = et ,
gl(mla“'axm) gn(xla"wxn)
as in Definition 9.2.1.
But if we now define V! =V NY, then V' is a neighbourhood of P in Y which is
contained in an affine space, and ¢ is of course given by exactly the same formula

as tp. Thus ¢ is itself a morphism. (]

10. PRODUCTS OF ALGEBRAIC SETS

There is an obvious identification A™(Q2) x A"(Q) — A™*"(Q), and it is clear
that via this identification, the product of two affine algebraic sets becomes iden-
tified with an affine algeraic set in A™"(Q). For more general quasi-projective
algebraic sets, it is less obvious how to regard their product as an algebraic set.

In Subsection 8.5 we considered the products A™(2) x P"(Q2), and described
how to cut out algebraic subsets of these products: namely, via polynomials (or
ideasl) that were arbitrary in the coordinates on A™, but homogeneous in the
coordinates on P". It is easy to see, then, that the product of an affine algebraic
set and a projective algebraic set forms an algebraic set in A™() x P"*(€) (for the
appropriate choice of m and n).

We could use the same idea to cut out algebraic subsets of P™(2) xP™(Q2), namely
via polynomials (or ideals) that are bihomogeneous in the two sets of homogeneous
coordinates. A product of two projective algebraic sets could then be regarded as
an algebraic set in P™(Q) x P*(Q) (again, for the appropriate choices of m and n).

However, this is not a very convenient way to think about products, for example
because it means that we leave the worlds of quasi-projective algebraic sets; to get
a complete theory that allowed us to form arbitrary products we would have to
consider locally closed subsets of P™(Q2) x P*(Q), and then (to form products of
those with quasi-projective algebraic sets) P™(Q) x P*(Q) x PP(Q2), and so on.
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To avoid having to work with this proliferation of products of projective spaces,
it is convenient to once and for all identify the product P™(2) x P™(2) with a
projective algebraic set in P™" T+ (Q)) via the so-called Segre embedding. We
discuss this next.

10.1. Products of projective spaces and the Segre embedding.

10.1.1. Definition. Let zg,...,z,, denote homogeneous coordinates on P™, and
let yo, ..., Yy, denote homogeneous coordinates on P™. The Segre embedding

P™(Q) x P(§) s Pt ()

is defined via

([wo oo ram] [0 y1 t - ynl)
= [Z0Y0 : TOYL ¢ - v S EOYn P TIYO P e TAYn e Tnl0 5 e T Yn)-

10.1.2. Remark. A little more abstractly (and a little more canonically), if V' is
an m + 1-dimensional vector space, with associated projective space P(V), and W
is an n + 1-dimensional vector space, with associated projective space P(W), then
the Segre embedding is the morphism

P(V)xP(W) - P(VeW)
associated to the universal bilinear map
VxW-—-VgW.

Concretely, given a line £ C V and a line m C W, we may consider their tensor
product £® m as a line in V@ W.

The following lemma records the basic properties of the Segre embedding.

10.1.3. Lemma. The Segre embedding is well-defined and injective (jusitfying its de-
scription as an embedding), and its image is a Zariski closed subset of PMTMTR(Q)).

Proof. We consider just the case m = n = 1, leaving the general case as an exercise.

Suppose that ([zg : z1],[yo : v1]) is a point of P1(2). Then at least one of
xo,x1 and at least one of yo,y; is non-zero. and we may as well assume (after
relabelling if necessary) that xzo and yo are non-zero. The product zgyp is then
non-zero, and hence [zoyo : Toy1 : T1%o : T1y1) is a well-defined point of P3(Q).
Note that if we multiply either (zo,21) or (yo,y1) by a non-zero scalar, then all
the products z;y; are multiplied by this same non-zero scalar, so that the point
[Zoyo : Toy1 : 1Yo : x1y1] only depends on the points [z¢ : x1] and [yo : y1] of
P1(Q), and the Segre embedding is well-defined.

Suppose now that ([zo : 1], [yo : ¥1]) and ([z{ : 1], [y} : ¥}]) are two points in
P1(Q2) x P1(Q) with the same image in P3(£2). Then, again, at least one of xq,x;
and at least one of yg,y;1 is non-zero. and as before we may as well assume (after
relabelling if necessary) that xo and yo are non-zero.

By assumption the points [zoyo : Zoy1 : 1Yo : T1y1] and [zy) : oYL : ThYo ¢
x}yq] coincide, meaning that there is a non-zero scalar A € ) such that

(10.1.4) (T0Y0> ToY1, 190, T191) = MT0Yo, oY1, T1Y0, T141)-
In particular, we see that z(y) = Azoyo is non-zero, so that both zj and y{, are also
non-zero. Then, we find that

x/l/xé = xllyll/%yll = z1y1/Toy1 = x1/T0,
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and hence [z : 71] and [z{, : ] are the same point of P*(£2). A similar calculation
shows that [yo : y1] and [y : ¥}] are the same point of P!(Q2). Thus the Segre
embedding is injective, as claimed.

(Another way to phrase this last computation, which makes it even more trans-
parent — and which can help when extending it to the general case — is to note
that since xo, yo, x(, and y{, are all non-zero, we may as well assume — by rescaling
— that they are all equal to 1, so that our points have the form ([1 : x1],[1 : ¥1])
and ([1: 2], [1:v}]). In this case the equation (10.1.4) simplifies to

(17 1‘/1, yllv :Cllyi) = A(lv L1, Y1, Ilyl)'
Obviously, then, we must have A\ = 1, yielding ] = x1, ¥} = y1, as required.)

Let x,vy, z,w denote the homogeneous coordinates on P3(2). Then one immedi-
ately verifies that the image of the Segre embedding is contained in the zero locus
of rw — yz. Conversely, suppose that [z : y : z : w] € P?(Q) satisfies xw = yz; we
will show that this point lies in the image of the Segre embedding. At least one of
x,, z, Or w is non-zero; an obvious consideration of the symmetry of the situation
shows that it suffices to treat the case where x # 0. Then one checks that

(w:z) [z y])) = [2® oy a2yl =% oy 2z aw] =[x y: 2w
(the second-to-last equality using our assumption that zw = yz, and the final
equality applying a rescaling of the homogeneous coordinates by x~1) under the
Segre embedding. Thus the image of the Segre embedding precisely the zero locus

of zw — yz, and so we’ve proved that the image of the Segre embedding is Zariski
closed, as required. ([

Our next lemma confirms that we have achieved our goal, namely that we can
take products of quasi-projective algebraic sets without leaving the category of
quasi-projective algebraic sets.

10.1.5. Lemma. If X and Y are (quasi-)projective algbraic sets, say contained as
(locally) closed subsets in P™(Q2) and P*(Q), then the image of X x Y under the
Segre embedding P™(Q) x P*(Q) — Pmntm+n(Q) js a (locally) closed subset of
Pmn+m+n(Q).

Proof. We first reduce the quasi-projective case to the projective case. If X is
locally closed, and we let Z denote its closure, than the complement W of X in Z
is closed, and so X = Z\ W is expressed as a difference of closed subsets of P (€2).
Similarly, we may write Y = S\ T as the difference of closed subsets of P"(12).
The product X x Y is then equal to the difference Z x S\ (Z x TUW x S). If we
have proved that the product of closed sets maps to a closed set under the Segre
embedding, then we see that this does indeed express X xY as a difference of closed
sets, and hence that X x Y has locally closed image under the Segre embedding.

Since X x Y = (X xP"(©2)) N (P™(Q) x V), we further reduce to the case where
one of X or Y is all of projective space. It obviously suffices to consider the case
when Y = P"*(Q), since the other case will be handled identically. Now we may write
X = Z;1(92) for some homogeneous ideal I. Since then X = NpcrZ(p) (), where
F runs over all the homogeneous ideals in I, and since a product of intersections
is equal to the intersection of the products, we reduce to the case where X is the
zero locus of a single homogeneous polynomial F(xg,...,Tm).

As before, we now restrict to the case m = n = 1 (basically so as to simplifty
the indices), leaving the general case as an exercise. As in the proof of the previous
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lemma, let x,y,2,w denote the homogeneous coordinates on P3(f2), so that the
Segre embedding is defined by

T = ToYo,Y = ToY1,2 = 1Yo, W = T1Y1-
Let d denote the degree of F. Then we can find homogeneous polynomials of
degree d, say Fy(x,z) and Fy(y,w), so that Fy(zoyo,1y0) = ydF (0, 71), and
Fi(zoy1,z1y1) = y¢F(z0,21). Since at least one of 3y and y; is non-zero at any
point of P}(2), we then see that the image of X x P1(Q) is equal to the inter-
section of the image of P*(Q2) x P!(Q) with zero locus of the homogeneous ideal
(Fo(z, 2), Fi(y,w)); in particular, it is Zariski closed. O

The following definition records the key application of the Segre embedding that
is provided by the preceding lemma.

10.1.6. Definition. If X and Y are two quasi-projective algebraic sets, then we
regard X XY as a quasi-projective algebraic set by identifying with its image under
the Segre embedding.

The next result follows directly from what we have proved, but it is important,
and so is worth recording.

10.1.7. Lemma. If X and Y are quasi-projective algebraic sets.

(1) If Z and W are closed subsets of X and Y respectively, then Z x W is a
closed subset of X XY

(2) If U and V are open subsets of X and Y respectively, then U X V is an
open subset of X x Y.

Proof. Suppose that X is locally closed in P™(Q2), and that Y is locally closed in
P (). We may write Z = X NZ' for some closed subset Z’ of P (Q) (by definition
of the induced topology), and may similarly write W =Y N W' for some closed
subset W’ of P"(2).

Then ZxW = (X xY)N(Z' x W’). Lemma 10.1.5 shows that Z’ x W is closed
in Pt and thus that Z x Wis closed in X x Y.

Note that claim (2) follows formally from claim (1), since

UxV=XxY\(XxY\V)UX\V)xY).
]

One way to state the preceding result is that the Zariski topology on X x Y is
stronger than the product topology. (Note that typically it is genuinely stronger
than the product topology; indeed it will necessarily be so unless one of X or Y is
a finite set.)

10.2. Products of affine spaces. We now have two ways to think about a product
of affine spaces A™(2) x A™(Q) as a quasi-projective variety: there is the obvious
identification A™(Q) x A™(f2) — A™+7(Q), and there is the quasi-projective al-
gebraic set struture it obtains via our general construction in terms of the Segre
embedding. The next lemma shows that these coincide.

10.2.1. Lemma. The natural identification A™(Q) x A™(Q) — A™T™(Q) is an
isomorphism of quasi-projective varieties, if we endow the source with its quasi-
projective algebraic set structure via Definition 10.1.6 and we endow the target with
its natural affine algebraic set structure.
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Proof. This is just a matter of showing that this identification, and its inverse, are
both morphisms. As usual, we treat the case m = n = 1 here, leaving the general
case an an exercise.

We use the coordiantes [z : 1] and [yo : y1] on our two copies of P1(Q), and
corresponding affine coordinates z1/x¢ and y; /9o on our two copies of A1(£2). We
use the coordinates z,y, z,w on P3(2), and we recall that the Segre embedding is
given by

T = ZoY0,Y = ToY1,2 = L1Yo, W = T1Y1-
The image of A'(Q2) x A(Q) lies in the copy of A%(Q) C P3(Q2) given by x # 0,
whose affine coordinates are y/x, z/x,w/z.

In terms of these coordiantes, the map A(2) x AY(Q) — A2%(Q) is given by the
formula

and its inverse is given by

1 Y1 Y1 1 T1 Y1

— )= )

To Yo Yo To Zo Yo
These are polynomial formulas in the various affine coordiantes, and so are indeed
morphisms. O

10.3. Products of algebraic sets as categorical products. If X and Y are
quasi-projective algebraic sets, then we have seen that X x Y is again a quasi-
projective algebraic set. Our goal in this subsection is to show that X x Y is equal
to the categorical product of X and Y.

We begin with the following lemma, showing that the projections from a product
to its factors are morphisms.

10.3.1. Lemma. If X and Y are quasi-projective algebraic sets (so that X x Y is
also a quasi-projective algebraic set), then the projection morphisms X xY — X
and X xY =Y (defined by (P,Q) — P and (P,Q) — Q) are morphisms

Proof. Obviously it suffices to prove the lemma for the projection onto X; the case
of the projection onto Y will proceed in a completely analogous manner.

Suppose that X is locally closed in P™(2) and that Y is locally closed in P™(Q),
so that X x Y is locally closed in P™(§2) x P™(€2). Then applying Lemma 9.2.6 to
these various locally closed embeddings, we see that it suffices to prove the lemma
in the particular case when X = P™ () and Y = P"(Q2).

Let (P, Q) be a point of P™(Q) x P™(£2). Choosing coordinates appropriately,
we may assume that (P,Q) € A™(Q2) x A™(Q2). Lemma 10.2.1 then allows us to
identify A™(Q) x A™(Q) with A™T"(Q2), and it suffices to show that the projection
A™T(Q) — A™(Q) given by mapping to the first m coordinates is a morphism.
But this is obvious. O

The following lemma now shows that the product of quasi-projective varieties,
as we have defined it, serves as a categorical product.

10.3.2. Lemma. Let X,Y, and Z be quasi-projective algebraic sets, and let ¢ : Z —
X and 1 Z =Y be functions. Then ¢ and ¢ are morphisms if and only if their
product (p,v) : Z — X XY, defined by P — (o(P),¥(P)), is a morphism.
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Proof. If (¢,) is a morphism, then so are of ¢ and v, since these are obtained by
composing (¢, 1) with the projections onto X and Y respectively, and Lemma 10.3.1
shows that each of these projections is a morphism (and the composite of morphisms
is a morphism).

Conversely, suppose that each of ¢ and v is a morphism. Suppose that X
is locally closed in P™(€2) and Y is locally closed in P"(2). Let PV (Q) be the
projective space containing Z. Let P be a point of Z, and consider ¢(P). Since
® is a morphism, we may find a neighbourhood of U of P, contained in a copy of
AN (Q) contained in PV (Q), and a neighbourhood V of ¢(P), contained in a copy of
A™(Q) inside P"(Q), so that ¢y is given by a formula involving rational functions
in the coordinates u1,...,uy on AN (). We may find neighbourhoods U’ of P and
V' of ¥(P) satisfying the analogous condition for .

Now replacing U and U’ by UNU’, and taking into account Remark 9.2.3, we may
assume that U = U’, both contained in AN (€2). We will show that (¢, ¢j) : U —
X xY is amorphism. It will follow by Lemma 9.2.5 that (p, 1) itself is a morphism.
Now ¢y factors through V and +;; factors through V’, and V' x V"' is open in X xY’
and locally closed in A™(Q2) x A"(Q?) (by Lemma 10.1.7). Thus by Lemma 9.2.6,
it suffices to prove that the function U — A™(Q) x A™(Q2) induced by (¢, ¥v)
is a morphism. By Lemma 10.2.1, it in fact suffices to show that this function is
a morphism, when regarded as taking values in A™*"(Q). But since each of ¢y
and vy is given by a formula in terms of rational functions whose denominators
are nowhere vanishing on U, the same is true of this map U — A™*"(), and thus
it is also a morphism, as required. O

As one consequence of the preceding results, we can show that a product of
morphisms is a morphism. (This is just a specialization to our particular context
of a general argument about categorical products.)

10.3.3. Lemma. Suppose that X,Y,Z, and W are algebraic sets, and that ¢ : X —
Y and ¥ : Z — W are morphisms. Then the product map o X ¢ : X x Z - Y xW
is a morphism.

Proof. To check this, it suffices, by the preceding lemma, to check that each of the
momorphisms X X Z — Y (given by projecting to X, and then applying ¢) and
X x Z — W (given by projecting to Z, and then applying ) is a morphism. But
Lemma 10.3.1 shows that each of these maps is a composite of morphisms, and
hence is indeed a morphism. [

10.4. Diagonals and graphs. Let ¢ : X — Y be a morphism of quasi-projective
algebraic sets. Applying Lemma 10.3.2 to the pair of morphisms consisting of
idy : X — X and ¢ : X — Y, we obtain a morphism X — X x Y given by
P~ (P, <p(P)). For obvious reasons, we refer to this morphism as the graph of ¢,
and denote it by I',.

A special case is given by taking ¢ = idyx as well. In this case, we write Ax :
X — X x X rather than T4, since this is simply the diagonal map P — (P, P).

10.4.1. Lemma. If ¢ : X — Y is a morphism, then I'y : X — X X Y has closed
image, and induces an isomorphism from X to its image.

Proof. Lemma 10.3.1 shows that X — X X Y is a morphism, and obviously, when
restricted to the image I'¢(X), it provides an inverse to I'y. Thus all that remains
to show is that I'f(X) is closed.
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Morally, this is true because

Ip(X) ={(P,Q) € X XY [p(P) =Q},
and since ¢ is a morphism, this equation cuts out a Zariski closed set. However,
writing this out directly is slightly messy, and we can argue in a slightly less direct
way.

Namely, observe that I'¢(X) is the preimage under the morphism ¢ x idy of
Ay (Y) C Y xY. Since ¢ xidy is a morphism (by Lemma 10.3.3) is it continuous for
the Zariski topologies on its source and target, and so it suffices to show that Ay (Y)
is a closed subset of Y x Y. If Y is locally closed in P"(£2), then Ay (Y') = Apn(g)N
(Y xY), and so it suffices to show that Apn(q)(P™(2)) is closed in P"(2) x P™(Q2).

We check this in the case n = 1, leaving the case of general n as an exercise. In
this case, we recall that P(Q) x P1(€2) is identified with the zero locus of zw — yz
in P3(Q2) via the embedding

L = ZolYo, Y = ToY1, 2 = T1Yo, W = T1Y1,
We then see that Api(q) (Pl(Q)) is cut out by the additional equation y = z; in
particular, it is Zariski closed. ([l

By construction, we may factor any morphism ¢ : X — Y through its graph: ¢
is given as the composite

FW
X—=XxY =Y.

This is is often useful, since it factors the arbitrary morphism ¢ as the composite
of a closed embedding and a projection.

10.5. Elimination theory, revisited. There is one more important detail that
we have to check with regard to the Segre embedding. Namely, we may restrict
the Segre embedding to A™(Q) x P*(Q2), and we now have two ways to impose
a Zariski topology on this product: using the approach of Subsection 8.5 above,
or by regarding it as a subset of P™"T™+"(Q)) via the (restriction of) the Segre
embedding.

10.5.1. Lemma. The restriction of the Segre embedding to A™(2) x P™(2) embeds
it as a locally closed subset of P™"T™(Q)  and the Zariski topology defined on
A™(Q) x P™*(Q) in Subsection 8.5 coincides with the Zariski topology induced on it
by regarding it as a locally closed subset of P T+ (Q) via the Segre embedding.

Proof. Again, we treat just the case m = n = 1, leaving the general case as an
exercise. We may identify A'(Q) x P1(Q2) as the subset of points of the form
([zo : 1], [yo : w1])) in PH(Q) for which zo # 0.

Since A(Q) x P1(2) is a product of quasi-projective varieties, the first claim of
the lemma is a special case of the Lemma 10.1.5. However, it won’t hurt to prove
this special case explicitly. As in the proof of Lemma 10.1.3, let x,y, z, w be the
homogeneous coordiantes on P3(£2). The Segre embedding is defined by

T = ToYo,Y = ToY1,2 = 1Yo, W = T1Y1-
Since xg # 0, and at least one of yg or y; is non-zero, we see that the image of
A(Q) x P}(Q) coincides precisely with the complement in the zero locus of zw —yz
(which we recall from the proof of Lemma 10.1.3 coincides with the image of the
Segre embedding on P1(Q2) x P}(2)) of the zero locus of the homogeneous ideal
(x,%). Thus this image is locally closed in P3(Q2), as claimed.
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If we write t = x1/x¢, so that t is a coordinate on A!(Q2), then we see that
for any homogeneous polynomial F(z,y, z,w), the intersection of the zero locus of
F with the image of A'(Q2) x P1(Q) is equal to the zero locus of the polynomial
F(yo, y1,tY0,ty1), which is then homogeneous in the y variables. This shows that
the preimage, under the Segre embedding, of any Zariski closed subset of P3(Q) is
a Zariski closed subset of A1(Q2) x P1(Q), in the sense of Subsection 8.5.

Conversely, suppose that f(¢,yo,y1) is a polynomial that is homogeneous in the
y variables. We wish to show that the image of its zero locus in Al(2) x P1(Q)
under the Segre embedding is the intersection of the image of A1(Q2) x P1(Q) with
a Zariski closed subset of P3(Q).

Let d denote the degree of f(¢,yo,y1) with respect to ¢ (i.e. the largest power
of t appearing in f), and define fo(t,50,91) = ¥ fo(t,y0,91) and fi(t,y0,91) =
v f(t,y0,v1). Note that since at any point of P!(Q) at least one of yo or y; is non-
zero, the zero locus of f in A*(Q2) x P1(Q) coincides with the common zero locus of
fo and f1. Note also that we may then find homogeneous polynomials Fy(z,y, z)
and Fy(x,y,w) such that fo = Fo(yo,y1,yo0t) and fi1 = Fi(yo,y1,y1t). Thus we see
that the image of the zero locus of f in Al(Q) x P1(Q) under the Segre embedding
is equal to the intersection of the image of Al(2) x P1(Q) with the zero locus of
the ideal (Fp, F1). This completes the proof of the lemma. a

With the previous lemma in hand, we are now able to extend Theomem 8.6.1
(the main theorem of elimination theory) in the following manner.

10.5.2. Theorem. Suppose that ) satisfies the Nullstellensatz. If X is any quasi-
projective algebraic set, and Y is any projective algebraic set, then the projection
morphism X xY — X is a closed map.

Proof. If we choose n so that Y is a closed subset of P™(£2), then X x Y is a closed
subset of X x P"(Q) (by Lemma 10.1.7), and so it suffices to consider the case when
Y =P*(Q).

A simple topological argument shows that it suffices to find a cover of X by open
sets U such that the projection U x P™ — U is closed. (This uses the fact that the
sets U x P™ then provide an open cover of X x P" by Lemma 10.1.7.)

As already noted in Remark 9.1.3, if X is locally closed in P™(£2), then each
point P € X has an open neighbourhood U contained in a copy of A™ () inside
P™(Q).

Now the morphism A™(Q) — P"(Q2) — A™(Q) is closed, by Theorem 8.6.1 (and
here we apply Lemma 10.5.1 to see that there is no ambiguity in the topology on
A™(Q2) x P*(Q) for which this holds), and hence its restriction U x P*(Q) — U is
closed as well. This proves the theorem. O

We have the following important corollary.

10.5.3. Corollary. Suppose that Q) satisfies the Nullstellensatz. If X is a projective
algebraic set, then any morphism ¢ : X — Y to a quasi-projective algebraic set is
closed.

Proof. We factor ¢ as

F‘P
X—=XxY->Y.
The first morphism is a closed embedding, and the second morphism is closed, by
the preceding theorem. Thus the composite of these two morphisms, which is to
say ¢, is closed. O
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11. THE NULLSTELLENSATZ

11.1. The Nullstellensatz for algebraically closed fields. Let k be an alge-
braic closure of k.

11.1.1. Theorem. If I C k[z1,...,2,] is an ideal, and if Z;(Q) # 0 for some field
extension Q of k, then Z;(k) # 0.

Proof. Evidently, replacing I by the ideal it generates in k[z1, ..., x,], we may sup-
pose that k = k. Also, replacing Q by a universal domain which contains it, we may
assume that € is a universal domain, and hence satisfies the Nullstellensatz. (This
will allow us to apply the main theorem of elimination theory, and its corollaries.)

We proceed by induction on n, the result being clear if n = 0. If [ is zero,
then there is nothing to prove. Thus we may assume that I # 0, and hence that
Z1(Q) # A™(Q). Write Z := Z;(f2), and consider the projective closure Z of Z
in P*. Since Z # A"(Q), we have that Z does not contain the entire hyperplane
H at infinity, and thus by Lemma 6.3.3 we may find a k-valued point P of H (the
hyperplane at infinity) that does not lie in Z.

Let H' be a hyperplane in P"(Q) defined over k which does not contain P.
Consider the “projection from a point” P"(2) \ {P} — H’. This is a morphism
(check!), and so its restriction to Z is a morphism.

Corollary 10.5.3 implies that the image of Z in H' (which is a copy of P"~1(Q))
is closed. Since P lies in the hyperplane at infinity, a point in the image of Z lies
at infinity if and only if it is the image of a point at infinity in Z if and only if its
entire preimage in Z lies at infinity. Thus the image of Z under projection from
P consists precisely of those points in the image of Z which do not lie at infinity;
thus this image is a closed subspace of H' \ H (which is a copy of A"~1(Q)). It is
non-empty, since Z is, and hence by induction we may assume that it contains a
k-valued point Q).

Now consider the line £ joining P and @. This line is defined over & (since it joins
two points with coordinates in k), and its intersection with Z is a Zariski closed
subset. It is non-empty (since Q is in the image of Z under the projection from P
to H'). Now a Zariksi closed subset of a line over k consists of either the entire line
(in fact, this is not the case in our situation, since P € Z) or of a finite number of
points defined over k (since it is obtained by solving a polynomial in one variable
with coefficients in k, and k is algebraically closed). Thus £ N Z contains a point
defined over k. Since ) does not lie on H, neither does this point, and so in fact
we have constructed a point of Z defined over k, as required. (Il

11.1.2. Corollary. If I C k[x1,...,zy] is an ideal, then Z;(k) = 0 if and only if
I =Fk[zy,...,x,).

Proof. Since k can be embedded into a universal domain 2, this follows immediately
from Theorems 6.6.1 and 11.1.1. O

11.1.3. Corollary. A field satisfies the Nullstellensatz (in the sense of Subsec-
tion 6.7) if and only if it is algebraically closed.

Proof. The preceding corollary precisely shows that algebraically closed fields sat-
isfy the Nullstellensatz. Conversely, if a field satisfies the Nullstellensatz, then any
non-constant element of k[x] must have a zero in k, and thus k& must be algebraically
closed. (]
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Thus all our results on fields that satisfy the Nullstellensatz apply to arbitrary
algebraically closed fields.

12. REGULAR FUNCTIONS ON AFFINE ALGEBRAIC SETS

12.1. Affine neighbourhoods. As we noted in Remark 9.1.3, if X is a quasi-
projective algebraic set, contained in P™(f2), then each point P € X has an open
neighbourhood U which is contained in A™(Q2) (for an appropriate choice of coor-
dinates on P"(92)).

In this section we record a much more precise result, which is a consequence of
the Rabinowitz trick, and is extremely useful in many situations.

12.1.1. Proposition. If X is a quasi-projective algebraic set, then each point of X
has a neighbourhood basis consisting of open subsets that are isomorphic to affine
algebraic sets.

Proof. Let P € X C P"(Q), and (as in Remark 9.1.3) choose coordinates on P"(2)
so that P € A™(Q). Replacing X by U := X NA™(Q) (which is an open subset of X
containing P), we may assume that X is in fact locally closed in A™(€2). We may
thus write X = Z \ W, for some closed subsets Z and W of A"(2) (with P € Z
and P ¢ W).

Now any open neighbourhood V of P is (by definition of the induced topology)
of the form X \ Y, for some closed subset Y of A™(Q2). We may thus write V =
Z\(WUY'). Now the closed set WUY is the zero locus of some ideal I € k[x1, ..., 2]
(where the x; are coordinates on A™(Q2)). Since P € V, there is some element f € T
such that f(P) # 0, and so if we let T denote the zero locus of f, then P ¢ T, while
TDO>WUY, and so Z\ T is an open neighbourhood of P in X which is contained
in V.

The Rabinowitz trick shows that A™(2) \ T is isomorphic to a closed subset of
A"TH(Q), and so Z \ T, which is a closed subset of A"(Q2)\ 7, is also isomorphic to
a closed subset of A"T1(Q). Thus we have shown that V, which was an arbitrary
neighbourhood of P, contains an open neighbourhood of P which is isomorphic to
an affine algebraic set. ([

12.1.2. Remark. We will frequently engage in a common abuse of language, and
say that a quasi-projective algebraic set is affine provided that it is isomorphic to
an affine algebraic set. Admitting this abuse of language, the preceding theorem is
usually stated in the form “each point of a quasi-projective algebraic set admits a
basis of open affine neighbourhoods”.

12.2. Rings of regular functions, and an equivalence of categories.

12.2.1. Definition. If X is an affine algebraic set, then we let k[X] denote the set
of morphisms from X to A'. The set k[X] is naturally a k-algebra under pointwise
addition and multiplication, and we refer to it as the ring of regular functions on
X, or sometimes as the affine ring of X.

12.2.2. Theorem. If X = Z;(Q2) C A™(Q), for an ideal I C k[z1,...,xy], then
there is a natural isomorphism k1, ..., z,]/rad(I) — k[X].
12.2.3. Theorem. The passage from X to k[X] induces an anti-equivalence of

categories between the category of affine algebraic sets and the category of reduced,
finitely generated k-algebras.
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13. PROPER, PROJECTIVE, AND FINITE MORPHISMS, AND CHEVALLEY’S
THEOREM

13.1. Projective and proper morphisms.

13.1.1. Definition. A morphism ¢ : X — Y of quasi-projective algebraic sets is
called projective if it may be factored as

XY xPQ) =Y,

where the first morphism is a closed embedding (i.e. has closed image, and induces
an isomorphism of X onto its image), and the second morphism is simply the
projection onto Y.

13.1.2. Definition. A morphism ¢ : X — Y of quasi-projective algebraic sets
is called proper if for any quasi-projective algebraic set Z, the induced morphism
pxidg: X X Z =Y x Zis closed.

13.1.3. Theorem. A morphism is projective if and only if it is proper.

Proof. Suppose first that ¢ is projective, and choose a corresponding factorization
X—=YxP'(Q) =Y

of . Taking the product with Z, we obtain a corresponding factorization of ¢ xidz,

namely
XXZoYXZxP'(Q)—-Y xZ.

The first arrow comes from taking the product with a closed embedding, and so
(by Lemma 10.1.7) is again a closed embedding, while the second arrow is simply
the projection onto Y x Z, and so is closed by Theorem 10.5.2. Thus ¢ x idy is
closed, and so ¢ is proper.

Conversely, suppose that ¢ is proper. Since X is a quasi-projective variety, it is
a locally closed subset of P™(£2) for some n; let ¢ : X — P™(Q)) denote the inclusion.
Then ¢ admits the factorization

x @y P - Y.
We will show that the first of these maps is a closed embedding, and thus that ¢ is
projective.
Firstly, consider the factorization

r, idpn
X <5 X x P(Q) Ty« prQ)
of (¢, ). The first arrow is the graph of ¢, and so is closed by Lemma 10.4.1. The
second arrow is the product of ¢ with P"(2), and so is closed, since by assumption
¢ is proper. Thus the composite of these morphisms (i.e. (p,¢)) is closed.
The morphism (¢, ¢) admits an alternate factorization, namely as

r LXi
XS X xY 2N pr)x Y 2Y x PY(Q)

(where the last isomorphism just switches the two factors). The first of these arrows
is a graph, hence is a closed embedding (by Lemma 10.4.1), and the second arrow is
the product of the locally closed embedding ¢ with P™(£2), and so is again a locally
closed embedding (by Lemma 10.1.7); thus their composite (i.e. (¢,¢)) is a locally
closed embedding. We have already seen that (p,¢) is closed, and so in fact it is a
closed embedding, as required. ([
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13.2. Finite morphisms and Chevalley’s theorem.

13.2.1. Definition. A morphism of rings A — B is said to be finite if it makes B
a finitely generated A-module.

13.2.2. Remark. The condition that B be finitely generated over A as a module is
much stronger than the condition that it be finitely generated over A as an algebra.
For example, if A =k is a field, then k[z1, ..., z,] is certainly finitely generated as
a k-algebra, but it is infinite-dimensional as a k-vector space.

13.2.3. Definition. We say that a morphism ¢ : X — Y of quasi-projective al-
gebraic sets is finite if each point P € Y admits an open affine neighbourhood U
whose preimage V := ¢~ 1(U) is again affine (in the sense that it is isomorphic to
an affine algebraic set), and such that the induced morphism ¢* : k[U] — k[V] on
affine rings (given by pull-back via ) is a finite morphism.

13.2.4. Example. If X is the zero locus of y*> — z in A%(Q), and Y = A1(Q), then
the morphism ¢ given by (z,y) — « is finite. Indeed, we take U =Y and V = X.
The morphism ¢* is then the inclusion k[z] — k[z,y]/(y*> — z), and we note that

klo,yl/(y* — 2) = k[z](1,y)
is free of rank two (and in particular finitely generated) as a k[z]-module.

13.2.5. Example. If X is the zero locus of zy — 1 in A?(2), and Y = A1(), then
the morphism ¢ given by (z,y) — « is not finite.

Indeed, take P to be the point 0 € A'(Q). The open neighbourhood U of P
are given by taking the complement of the zeroes of a polynomial f(x) with non-
constant term. (This last condition ensures that 0 is not a root of f(x).) Such a
neighbourhood U is affine, with affine ring given by k[z,1/f]. (This is a special
case of the Rabinowitz trick.) The preimage of U is then again affine, with affine
ring given by k[z,1/f,y]/(zy — 1) = k[z,2',1/f]. Since f has non-zero constant
term, it is easy to verify that k[z,2~1,1/f] is not finitely generated as a module
over klz,1/f].

The preceding counterexample involves our favourite, and standard, illustration
of the incompleteness of affine space, namely a hyperbola. Thus it will likely come
as no surprise that finiteness of a morphism is related to projectivity of a morphism.
The precise statement is given in the following theorem, which is due to Chevalley.
It connects the algebraic concept of finiteness to the more geometric concepts of
projectivity and finiteness of fibres.

13.2.6. Theorem. A morphism of quasi-projective algebraic sets is finite if and
only if it is projective with finite fibres.
Proof. Suppose, to begin with, that ¢ : X — Y is a projective morphism of quasi-
projective algebraic sets with finite fibres. We will show that ¢ is finite.

By definition of projectivity, we may factor ¢ as

X<—=Y xP'Q) —Y,
where the first arrow is a closed embedding, and the second arrow is the projection.

Let P be a point of Y. By assumption ¢~ !(P) is finite, and so we may find a
hyperplane H C P"*(Q) disjoint from ¢~1(P).® Since H is closed in P"(f2), we see

8We want this hyperplane to be defined over k, so that we can choose coordinates on P™ so
that it becomes the hyperplane at infinity, and so at this point we are tacitly assuming that k is
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that Y x H is closed in Y x P"(§2) (Lemma 10.1.7), and hence so is X N (Y x H).
Theorem 10.5.2 then shows that the image of X N (Y x H) under the projection
Y x P*(Q2) — Y is closed; denote its complement by U’. Our choise of H ensures
that P € U’, and by construction we have that

P H(U) €Y x (P*(Q)\ H).

Let U be an affine open neighbourhood of P contained in U’. (We can find such a
neighbourhood, by Proposition 12.1.1.) Then

e H(U)=Xn (U xP"(Q)),

and so p~1(U) is closed in U x P*(2). On the other hand, since U C U’, we have
that

P I (U) C U x (P"()\ H),

and so in fact ¢1(U) is closed in U x (P"(2) \ H). This latter set is a product
of affine algebraic sets, and so is itself an affine algebraic set. Thus ¢~ (U), being
closed in an affine algebraic set, is itself an affine algebraic set.

Writing V' := ¢~ }(U), it suffices to show that the morphism k[U] — k[V],
induced by pull-back via ¢, is a finite morphism of rings. To do this, we use the
description of closed subsets of affine times projective space given in Subsection 8.5.
We see that V', being a closed subset of U xP™(2), is the zero locus of a homogeneous

ideal I C k[U][yo, .- -,Yn], where the y; are homogeneous coordinates on P™(2).
Let’s choose coordinates so that H is cut out by yo = 0. Then, since in fact
(13.2.7) VcUx (P(Q)\ H),

we find that the zero locus of the homogeneous ideal (I,yq) is empty. We deduce
from Proposition 8.3.3 that (I,y0)a = k[U][yo,-- -, Yn]a for some d. Thus, if mg is
monomial of degree d in the y;, we may write

(13.2.8) ma = Yo fa-1+ fa,

where f; € I and fy_1 is homogeneous of degree d — 1.

Now, again taking into account (13.2.7), we see that the affine ring k[V] is
obtained as the quotient k[U][y1/vo,.- . 7yn/yo]/f7 where I is the ideal obtained
by “dehomogenizing” I with respect to yo; i.e., it is the ideal generated by the
polynomials y, tf;, where f; is a(n arbitrary) homogeneous element of I of degree
i.

Dehomogenizing the relation (13.2.8) in this way, we find that

Yo “ma = yo_(d_l)fd—1 +yotfa= yo_(d_l)fd—l mod .

Thus any element of k[U][y1/Yo,- -, yn/yo] of degree > d in the variables y;/yo is
congruent modulo I to an element of degree < d— 1. Thus k[U][y1/yo, - - - > Yn/yo] /T
(which, as we have already noted, is just k[V]) is generated as a k[U]-module by the
images of the monomials of degree < d—1 in the variables y;/yo. In particular, it is
finitely generated as a k[U]-module. This completes the proof of the “if” direction
of the theorem. O

infinite. The theorem remains true when £ is finite, but a little extra argument is required, which
we omit.

To be continued ...
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14. LOCALIZATION

Localization is the process in commutative algebra that corresponds to the geo-
metric/topological idea of restricting attention to an open subset of some given
algebraic set.

14.1. Distinguished open subsets of an affine algebraic set. We begin with
a recapitulation and slight reformulation of the results we have already deduced
from the Rabinowitz trick.

If V is an affine algebraic set, let A := k[V] denote the ring of regular functions
onV. If fe A and Z := {P € V| f(P) = 0}, then Z is a closed subset of f
(e.g. because f is Zariski continuous, and Z is the preimage of the closed subset
{0} c A'), and so D(f) := V' \ Z is an open subset of V.

14.1.1. Proposition. The quasi-projective algebraic set D(f) is isomorphic to an
affine algebraic set, and its ring of regular functions is naturally isomorphic to
Aly]l/(1— fy). Furthermore, the open sets D(f) (for f € k[V]) form a basis of open
sets for the Zariski topology of V.

Proof. The first claim is a restatement of the Rabinowitz trick, namely: the map
P —(P, f(P)~") induces an isomorphism between D(f) and the closed subset

{(Py) eV x A'|1— f(P)y =0}

Theorem 12.2.2 then shows that k[D(f)] = Aly]/I, where I denotes the radical of
(1 — fy). We will see in Corollary 14.3.7 below (since A is reduced, being the ring
of regular functions on V') that (1 — fy) is already a radical ideal, and hence indeed
KID(D)] 2 Aly)/(1 - fy).

The fact that every point of V has a neighbourhood basis consisting of open
sets of the form D(f) was proved in the course of proving Proposition 12.1.1. The
following lemma shows that the intersection of two sets of the form D(f) is again
of this form, O

14.1.2. Lemma. If f1, fo € k[V], then D(f1) N D(f2) = D(f1f2).

Proof. This is just a restatement of the fact that (f;f2)(P) # 0 if and only if both
f1(P) # 0 and fa(P) # 0. O

14.1.3. Definition. For an affine algebraic set V', the open subsets of the form
D(f) (for some f € k[V]) are called distinguished open subsets of V.

Slightly informally, in the above context one might write A[1/f] rather than
Aly]/(1 = fy), since adjoining an element y for which fy = 1 amounts precisely to
adjoining a multiplicative inverse for f to A.

The algebraic process of passing from A to A[1/f] is called localization.

14.2. Localizing rings. Let A be a ring, and let S be any subset of A.
14.2.1. Definition. We write
Ag = Al{za}acal/({1 — aza}taes).

In words: we adjoin one variable, which we’ve denoted z,, to A for each element
a € S, and for each such element we impose the relation ax, = 1. We refer to Ag
as the localization of A at S.
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Slightly informally, one could write A[{a"'}],es for Ag, since we form Ag pre-
cisely by adjoining an inverse for each a € S. One way that this can be expressed
more formally is by the following universal property of Ag.

14.2.2. Proposition. If B is an A-algebra, say with structural morphism ¢ : A —
B, then Homa_a15(As, B) is either empty or consists of a single element, and it is
non-empty precisely if the element p(a) € B is invertible for each a € S.

Proof. To give a ring homomorphism 1 : Ag — B compatible with ¢, we have to
give elements ¢ (x,) € B for each a € S, and these have to satisfy the relations
o(a)(x,) = 1. Thus we can define such a ¢ precisely if ¢(a) is invertible for
each a € S, in which case the value of ¥(x,) is uniquely determined, namely as

p(a)~". O

Sometimes it is convenient to suppose that the set S is closed under multiplica-
tion.

14.2.3. Definition. We say that a subset S of A is multiplicative if it is closed
under multiplication.

14.2.4. Lemma. If S is a subset of A, and T is the multiplicative subset of A that
S generates (i.e. T consists of all finite products of elements of S), then there is a
natural (indeed, a unique) isomorphism of A-algebras Ag = Arp.

Proof. Since the set of units of a ring is closed under multiplication, one sees from
Proposition 14.2.2 that Ag and Ar satisfy the same universal property, and hence
are naturally isomorphic.

Concretely, taking B to be Ay in that proposition, we find that there is an (in-
deed, a unique) A-algebra homomorphism Ag — A, and similarly, taking B to be
Ag and applying the proposition to Ar (and noting that since all the elements of
S map to units in Ag, so do all the elements of T'), we obtain an A-algebra homo-
morphism Ar — Ag (which is again unique). These homomorphisms are mutually
inverse, and so induce the required isomorphism. (To see that they are inverse, one
can work with the explicit description given in the proof of Proposition 14.2.2, or
one can note that the composite Ag — Ar — Ag is an A-algebra endomorphism
of Ag, and similarly A7 — Ag — Ar is an A-algebra endomorphism of A, and
Proposition 14.2.2 shows that the only endomorphism of either Ag or Ar is the
identity.) O

14.2.5. Remark. If S consists of a single element a € A, then we usually write A,
rather than Ay, for the localization of A at the singleton set a.

14.2.6. Lemma. If S is a finite set, and a denotes the product of the finitely many
elements of S, then there is a natural (indeed, a unique) isomorphism of A-algebras
Ag =2 A,.

Proof. This is proved similarly to Lemma 14.2.4, noting for any finite set of elements
of a ring, each element of the set is invertible if and only if their product is (and
hence, all the elements of S have invertible images in a given A-algebra B if and
only if the image of their product a is invertible in B). (]
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14.3. Localizing modules.

14.3.1. Definition. If A is a ring, S is a subset of A, and M is an A-module, then
we write

Mg := As @4 M,
and refer to Mg as the localization of M at S.

The following lemma shows that localization at S is an exact functor (for any
set 9), or equivalently, that Ag is a flat A-algebra.

14.3.2. Lemma. The functor M — Mg is exact, i.e. if0 > M — N — P — 0 is
an exact sequence of A-modules, then the induced exact sequence 0 — Mg — Ng —
Ps — 0 is again exact.

Proof. Since tensoring is always right exact, the only thing we have to check is
that if M — N is an injective homomorphism of A-modules, then the induced
homomorphism Mg — Ng is again injective.

Going back to the definition of Ag as A[{z,}aes]/({1 — azq)acs), we see that
we may write

Ms = M{za}aes)/ (1~ ava) M[{za}acs),
acsS
and similarly
Ns = N[{za}aes]/ Z(l —aza)N[{za}aes]-
a€s
(Here we write M[{z,}qaes] to denote the module over A[{z,}qcs] consisting of
polynomials with coefficients in M, and similarly for N[{z,}aes].)

Suppose that m € Mg lies in the kernel of Mg — Ng. Let m’ € M[{x,}qcs] be
a polynomial (with coefficients in M) that maps to m’ in Mg. The assumption that
m’ lies in the kernel of Mg — Ng implies that the image of m’ in N[{z,}.cs] lies
in) o1 —axs)N[{zs}ees]. Now m' is a polynomial, so it only actually involves
finitely many of the variables z,. (Put another way, the coefficient in m’ of all but
finitely many of the monomials in the z,’s are zero.) Similarly, if its image lies in
Y acs(I—=azq)N[{x4}aes], then in fact its image lies in ) . ¢/ (1 —axq) N [{24 }aes']
for some finite subset S of S.

In other words, we may find a finite subset S’ of S so that m’ € M[{z,}aecs],
and such that its image in N[{x,}aes] lies in ) o (1 — aza) N[{Za}acs] If we
can show that m' then lies in } .o (1 — axa) M[{74}ees], then in particular we
will know that it lies in ), o(1 — axe) M [{Za}aes], and thus that its image m in
Mg vanishes. Thus we will have proved that Mg — Ng is injective, as required.

To summarize: the discussion of the preceding paragraph shows (replacing S
with S”) that we may assume that S is finite. Lemma 14.2.6 then shows that we
may assume that S = {a} is a singleton. Thus we are reduced to showing that if
M < N is injective, then the induced homomorphism

Mz)/(1 —ax)M[x] — Nlz]/(1 — az)N|x]
is injective.
Suppose that m’ is a polynomial in M[z] whose image in N[z| is divisible by
(1 — ax), say m’ = (1 — ax)n/, for some n’ € N[z]. (Since M[z] — N[z] is an
embedding, we use the same notation to denote m’ and its image in N[z].) Note
that N[z] embeds into N[[z]] (power-series in x with coefficients in M) and that
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1 — ax is invertible in A[[x]] (its inverse is 1 + ax + a?2z? + - - ). Thus, working in
N{[[z]], we find that n’ = (1 — az)~'m’ € M|[z]]. Thus n’ € N[z] N M[[z]] = M|z],
and so in fact (1 — az) divides m/ in M[z]. This implies that M[z]/(1 —az)M[z] —
N[z]/(1 — ax)N[z] is injective, as required. O

14.3.3. Remark. (1) The part of the preceding proof in which we reduce to a finite
set S’ may be expressed more succinctly in terms of direct limits. More precisely,
we have a natural isomorphism
Al{za}s] — lim A[{za}ees']
S/
(where S’ runs over the finite subsets of S), and thus a natural isomorphism
As — lim Ag,
S/
where S’ runs over all the finite subsets of S. Since tensor products commute with
direct limits, we then obtain a natural isomorphism
MS I h_H}l MS/-
S/
Finally, since passing to direct limits is exact, we find that the kernel of Mg — Ng
is the direct limit of the kernels of the homomorphisms Mg — Ng:.

(2) The proof of exactness in the case S = {a} may also be expressed more
succinctly, via the snake lemma. Namely, from the exact sequence 0 - M — N —
P — 0 we obtain an exact sequence 0 — M|[z] — N[z] — P[z] — 0, and we may
then form the morphism of exact sequences

0 — M|z] N|z] Plz] 0
0 — M|z] N|z] Plz] 0

Now multiplication by (1 —az) is invertible on M[[z]], N[[z]], and P[[z]], and hence
injective on M|z], N[x], and P[z]. The snake lemma thus implies that we obtain a
short exact sequence

0 — Mlz]/(1 — ax)M[z] — N[z]/(1 — ax)N[z] — Plz]/(1 — ax)Plx] — 0,
as required.

The preceding lemma implies in particular that if M is a submodule of an A-
module N, then we Mg embeds as a submodule of Ng. The next lemma gives a
kind of converse to this fact.

14.3.4. Lemma. If N is an A-modules, and if M' is an Ag-submodule of Ng, then
there is an A-submodule M of N so that M’ is the image of Mg under its natural
embedding into Ng. More precisely, if ¢ : N — Ng denotes the natural map, and
if we write M := @~*(M"), then the embedding Ms — Ns identifies Ms with M'.

Proof. By Lemma 14.2.4, it is no loss of generality to assume that S is multiplica-
tive, and we do so. Now, if a’ € Ag, then we may find a” € S so that a’a” lies in
the image of the natural map A — Ag. (Just “clear denominators”; it is to simplify
the statement of this step that we assume S multiplicative.)



44 MATTHEW EMERTON

Let m’ € M’ C Ng. Since Ng := Ag ® N, we may write m’ as a finite sum
m' =), a;®n;, for some aj € Ag and n; € N. Choose a; € S so that ajaj € A for
each 4, and write a := [[, a. Then aa; € A for all ¢, and so am’ = )", aal @ n; is
the image in Ng of the element ), (aaj)n; of N. It is also an element of M’ (since
M’ is an Ag-submodule of Ng).

Thus, if we let ¢ : N — Ng denote the natural map, we find that am’ €
¢~ (M")). Since a € S, it is invertible in Ag, and thus we find that m’ €
Asp(p~1(M")). Thus, if we write M = ¢~1(M’), then M is an A-submodule of N,
and M’ is the image of Mg := Ag ® M in Ng. O

The following lemma describes the kernel of the natural map M — Mg.

14.3.5. Lemma. IfT denotes the multiplicative set generated by S, then the kernel
of M — Mg consists precisely of those m € M such that tm =0 for somet € T.

Proof. As in the proof of Lemma 14.3.2, we write

My = Ml{abacs)/ 3 (1 — aza) M{za bacs]
a€sS
If m € M lies in the kernel of the map M — Mg, then we see that m (thought of
as a constant polynomial) lies in } . o(1 — axq) M {24 }acs]- Thus in fact

me Z (1 —aza)M{za}taes]
a€eS’
for some finite subset S’ of S, and so m lies in the kernel of the natural homomor-
phism M — Mg:. Thus, replacing S by S’, we may assume that S’ is finite, and
then, by applying Lemma 14.2.6, that S’ = {a} is a singleton.
Suppose now that m = (1 — ax)m’ for some m’ € M|z]. Working in M|[[z]], we
find that

m' = (1+ar+a®2®+---+a 2"+ )m = m+amz +a*mz* +- - +a"ma" +--- .

Since m' is a polynomial by assumption, we find that necessarily am = 0 for
some n, and thus that the lemma holds when S = {a}. As we already observed,
this implies the lemma in general. |

14.3.6. Remark. (1) As with the proof of Lemma 14.3.2, the first part of the proof
of the preceding lemma could be rephrased in the language of direct limits.

(2) Note the similarity of the second part of the argument with the proof of
Lemma 6.7.3. Indeed, that lemma is a special case of the preding lemma; namely,
it treats the case when A, = 0, i.e. the case when all of A is in the kernel of the
natural homomorphism A — A,, or equivalently, the case when 1 lies in this kernel.
The previous lemma shows that this is the case precisely when a™ = 0 for some n,
and this is also precisely the conclusion of Lemma 6.7.3.

We note the following consequence of the preceding lemma.
14.3.7. Corollary. If A is reduced, then so is Ag, for any subset S of A.

Proof. By Lemma 14.2.4, it is no loss of generality to assume that S is multiplica-
tive, and we do so.

If I’ denotes the nilradical of Ag (i.e. the ideal of nilpotent elements in Ag), and
I denotes its preimage under the natural map A — Ag, then Lemma 14.3.4 shows
that I’ is generated by the image of I in Ag. Thus, in order to show that Ag is
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reduced, it suffices to show that if an element of A has nilpotent image in Ag, then
it actually has zero image in Ag.

Suppose that a € A has nilpotent image in Ag, so that a™ lies in the kernel
of A — Ag. Then the preceding lemma shows that a”’a™ = 0 for some o’ € S.
Thus a”’a is a nilpotent element of A, and so a’’a = 0. The preceding lemma then
applies again to show that the image of a in Ag vanishes, as required. O

14.4. Localization at a prime ideal.

14.4.1. Definition. If p is a prime ideal in the ring A, then we write A, to denote
the localization of A at the multiplicative subset S = A\ p.

14.4.2. Remark. (1) The fact that A\ p is multiplicative is a rephrasing of the fact
that p is a prime ideal.

(2) The notation A, is completely at odds with our general notation Ag for
localizations, since it does not mean that we take S to be the set p! (Rather, we
take S to be the complement of p in A.) This is an unfortunate but completely
standard convention, which doesn’t cause confusion in practice (once you get used to
it), since prime ideals will always have fairly distinctive notation, usually involving
the letter ‘p’ in some way (such as p), which will alert you to which convention is
being used at any given moment.

The key feature of A, is that it has only one maximal ideal, the ideal generated
by p.

14.4.3. Proposition. Ifp is a prime ideal in A, then the ideal pA, of Ay is mazimal,
and is in fact the unique mazimal ideal of A,. The quotient field A, /pA, is naturally
isomorphic to the fraction field of the integral domain A/p.

Proof. If I’ is an ideal in Ay, then Lemma 14.3.4 shows that I’ is generated as an
ideal by the image (under the natural map A — A,) of an ideal I C A. Now if I is
not contained in p, then it contains some element a € A\ p, whose image in A, is
a unit. Thus I’ contains a unit, and hence is the unit ideal.

Thus any proper ideal of A, is generated by the image of an ideal in A, that is
contained in p, and hence any proper ideal of A, is contained in pA,. This shows
that pA, is a maximal ideal in A, and is the unique such maximal ideal.

Proposition 14.2.2 shows that A, is universal for morphisms to A-algebras in
which the image of A\ p consists of units. Thus A,/pA, is universal for morphisms
to A-algebras in which p maps to zero, and the image of A\ p consists of units.
We can reformulate this to say that A,/pA, is universal for morphisms to A/p-
algebras in which the image of the non-zero elements of A/p consists of units. But
these latter algebras are precisely the algebras over the fraction field x(p) of A/p.
Thus A, /pA, is universal for morphisms to k(p)-algebras. But obviously x(p) is
universal for morphisms to x(p)-algebras, and so there is a natural isomorphism
Ay /pAy = K(p), as claimed. O
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