MATH 205 Homework Supplement

In the following problems, $I_{k} \subset \mathbb{R}^{k}$ is the k-cell $[0,1]^{k}$, and Q_{k} is the k-simplex. You should use the notation $\left(u_{1}, \ldots, u_{k}\right)$ to denote a point in I_{k} or Q_{k}.

In each of the following problems, ω is a k-form and Φ is a k-surface. You should write

$$
\int_{\Phi} \omega
$$

in terms of 1-dimensional integrals involving the variables u_{i} only. In particular, you should compute all the relevant partial derivatives and evaluate the relevant determinants. There is no need to evaluate the one-dimensional integrals.

1. $\omega=x_{2}^{2} d x_{1}+x_{1} d x_{2}, \Phi(u)=(\cos u, \sin u), 0 \leq u \leq 1$.
2. $\omega=x_{1} x_{2} d x_{1} \wedge d x_{2}+\sin x_{3} d x_{1} \wedge d x_{3}, \Phi: Q_{2} \rightarrow \mathbb{R}^{3}, \Phi\left(u_{1}, u_{2}\right)=\left(u_{1}+u_{2}, e^{u_{2}}, 0\right)$.
3. $\omega=d x_{1} \wedge d x_{2} \wedge d x_{3}, \Phi: Q_{3} \rightarrow \mathbb{R}^{3}, \Phi\left(u_{1}, u_{2}, u_{3}\right)=\left(u_{1} u_{2}, u_{2}, u_{3}^{2}\right)$.
