Week 3, Due Mon 10/17

1. Let $\sigma \in S_{n}$ be an n-cycle, and let $\tau \in S_{n}$ be a 2 -cycle. Show by constructing a counterexample that there exists a choice σ and τ and n such that $\langle\sigma, \tau\rangle \neq S_{n}$. Bonus Question: determine for which n such an example exists.
2. Shuffling Redux. Let G be the subgroup of S_{52} generated by all of the following elements:

- $(n, 53-n)$ for all n.
- The element $(1,2, \ldots, 26)(52,51, \ldots, 27)$ of order 26 .
- The element $(1,2)(51,52)$.
(a) Prove that the elements of the form $(n, 53-n)$ generate the a subgroup H isomorphic $(\mathbf{Z} / 2 \mathbf{Z})^{26}$ inside S_{52}.
(b) Show that there is a homomorphism from G to the group S_{26}, such that:
i. The homomorphism is surjective.
ii. The kernel is precisely the subgroup H.
(It follows from this that G has order $2^{26} \cdot 26!=27064431817106664380040216576000000$.)
(c) Prove that the group generated by the two riffle shuffles is a subgroup of G. (In fact, they are equal.)

3. Let G be a finite group, and let $g \in G$ and $h \in G$ both have order 2. Determine the possible orders of $g h$.
4. Suppose that the map $\phi: G \rightarrow G$ given by $\phi(x)=x^{2}$ is a homomorphism. Prove that G is abelian.
5. Say that a subgroup H of G is cyclic if it is of the form $H=\langle g\rangle:=\left\langle g, g^{-1}\right\rangle$ for some element $g \in G$.
(a) Prove that any cyclic subgroup $H \subset G$ is abelian.
(b) Prove that any cyclic subgroup $H \subset G$ is either isomorphic to \mathbf{Z} or to $\mathbf{Z} / n \mathbf{Z}$, and that the latter happens exactly when h has finite order n.
(c) Prove that if G is any group, there is a bijection from the set of homomorphisms from \mathbf{Z} to G and elements of G, given by $\phi: \mathbf{Z} \rightarrow G$ goes to $\phi(1)$. (2.3 (19)).
(d) Exhibit a proper subgroup of \mathbf{Q} which is not cyclic (2.4 (15)).
(e) Let G be a finite group. Prove that G is equal to the union of its proper subgroups if and only if it is not cyclic.
6. (see $\S 1.4$) Let p be prime, and let $G=\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ be the group of invertible 2×2 matrices modulo p. Prove that $|G|=\left(p^{2}-1\right)\left(p^{2}-p\right)$.
