Week 3, Due Mon 10/17

- 1. Let $\sigma \in S_n$ be an *n*-cycle, and let $\tau \in S_n$ be a 2-cycle. Show by constructing a counterexample that there exists a choice σ and τ and *n* such that $\langle \sigma, \tau \rangle \neq S_n$. Bonus Question: determine for which *n* such an example exists.
- 2. Shuffling Redux. Let G be the subgroup of S_{52} generated by all of the following elements:
 - (n, 53 n) for all n.
 - The element $(1, 2, \dots, 26)(52, 51, \dots, 27)$ of order 26.
 - The element (1, 2)(51, 52).
 - (a) Prove that the elements of the form (n, 53-n) generate the a subgroup H isomorphic $(\mathbb{Z}/2\mathbb{Z})^{26}$ inside S_{52} .
 - (b) Show that there is a homomorphism from G to the group S_{26} , such that:
 - i. The homomorphism is surjective.
 - ii. The kernel is precisely the subgroup H.
 - (It follows from this that G has order $2^{26} \cdot 26! = 27064431817106664380040216576000000.)$
 - (c) Prove that the group generated by the two riffle shuffles is a subgroup of G. (In fact, they are equal.)
- 3. Let G be a finite group, and let $g \in G$ and $h \in G$ both have order 2. Determine the possible orders of gh.
- 4. Suppose that the map $\phi: G \to G$ given by $\phi(x) = x^2$ is a homomorphism. Prove that G is abelian.
- 5. Say that a subgroup H of G is cyclic if it is of the form $H = \langle g \rangle := \langle g, g^{-1} \rangle$ for some element $g \in G$.
 - (a) Prove that any cyclic subgroup $H \subset G$ is abelian.
 - (b) Prove that any cyclic subgroup $H \subset G$ is either isomorphic to \mathbb{Z} or to $\mathbb{Z}/n\mathbb{Z}$, and that the latter happens exactly when h has finite order n.
 - (c) Prove that if G is any group, there is a bijection from the set of homomorphisms from \mathbf{Z} to G and elements of G, given by $\phi : \mathbf{Z} \to G$ goes to $\phi(1)$. (2.3 (19)).
 - (d) Exhibit a proper subgroup of \mathbf{Q} which is not cyclic (2.4 (15)).
 - (e) Let G be a finite group. Prove that G is equal to the union of its proper subgroups if and only if it is not cyclic.
- 6. (see § 1.4) Let p be prime, and let $G = GL_2(\mathbf{F}_p)$ be the group of invertible 2×2 matrices modulo p. Prove that $|G| = (p^2 1)(p^2 p)$.