Week 4, Due Mon 10/23

1. Let H and K be normal subgroups of G such that $H \cap K$ is trivial. Prove that $x y=y x$ for all $x \in H$ and $y \in K$. (3.1, (42)).
2. Show that S_{4} does not have a normal subgroup of order 3 or order 8 .
3. If H is a subgroup of G, define the normalizer of H to be:

$$
N_{G}(H):=\left\{g \in G \mid g H g^{-1}=H\right\} .
$$

(a) Prove that $N_{G}(H)=G$ if and only if H is normal.
(b) Prove that $N_{G}(H)$ contains H.
(c) Prove that H is a normal subgroup of $N_{G}(H)$.
(d) Compute $N_{G}(H)$ for the following pairs (G, H) :
i. $\left(S_{4},\langle(1234)\rangle\right)$,
ii. $\left(S_{5},\langle(12345)\rangle\right)$,
4. Prove that the subgroup N generated by elements of the form $x^{-1} y^{-1} x y$ for all $x, y \in G$ is normal. (3.1 (41)).
5. Prove that if $G / \mathrm{Z}(G)$ is cyclic, then G is abelian. (For a hint, see 3.1 (36)).
6. Let G be a finite group, and let $H \subset G$ be a subgroup of index two - i.e. $|G| /|H|=2$. Prove that H is normal.
7. Let G be a finite group, and let $H \subset G$ be a subgroup of index three - i.e. $|G| /|H|=3$. Show that H is not necessarily normal.
8. Automorphism Groups. (see 4.4) Define an automorphism of a group G to be an isomorphism $\phi: G \rightarrow G$ from G to itself.
(a) Prove that the identity map is an automorphism.
(b) Prove that the composition of two automorphisms is an automorphism.
(c) Prove that the set of automorphisms forms a group under composition.
(d) If $g \in G$ is a fixed element, prove that the map $\phi_{g}: G \rightarrow G$ given by $\phi_{g}(x)=g x g^{-1}$ is an isomorphism.
(e) Prove that the map $\psi: G \rightarrow \operatorname{Aut}(G)$ given by $\psi(g)=\phi_{g}$ (sending the element g to the automorphism ϕ_{g}) is a homomorphism of groups.
(f) Prove that the kernel of the map $\psi: G \rightarrow \operatorname{Aut}(G)$ is the center

$$
\mathrm{Z}(G):=\{g \in G \mid g x=x g, \forall x \in G\} .
$$

(g) Define the inner automorphism group $\operatorname{Inn}(G)$ of G to be the subgroup of $\operatorname{Aut}(G)$ given by the image of G under ψ. Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
(h) Show that if G is abelian, then $\operatorname{Inn}(G)$ is trivial.
(i) Let $\operatorname{Out}(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$. Prove that
i. $\operatorname{Aut}(\mathbf{Z} / 3 \mathbf{Z})=\operatorname{Out}(\mathbf{Z} / 3 \mathbf{Z}) \simeq \mathbf{Z} / 2 \mathbf{Z}$,
ii. $\operatorname{Out}\left(S_{3}\right)=\{1\}$.
iii. $\operatorname{Aut}(K) \simeq \operatorname{Out}(K) \simeq S_{3}$, where $K=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ is the Klein 4-group.
9. Let p be an odd prime number. Prove that there are no surjective homomorphisms from S_{n} to $\mathbf{Z} / p \mathbf{Z}$ for any prime p. (Hint: consider the image of the two-cycles.)

