Week 6, Due Mon 11/06

1. Automorphisms of S_{n}.
(a) Let $\psi: G \rightarrow G$ be an isomorphism. If $\{c\}$ is a conjugacy class of G, prove that the image $\psi(\{c\})$ of $\{c\}$ under ψ is the conjugacy class $\{\psi(c)\}$.
(b) Deduce that $|\{c\}|=|\{\psi(c)\}|$.
(c) Let $G=S_{n}$. Prove that $|\{(12)\}|=n(n-1) / 2$.
(d) If $n \neq 6$, and $\sigma \in S_{n}$ has order 2 , prove that $|\{\sigma\}|=|\{(12)\}|$ if and only if σ is a 2 -cycle.
(e) Deduce that if $\psi: S_{n} \rightarrow S_{n}$ is an isomorphism, and $n \neq 6$, then ψ takes 2-cycles to 2-cycles.
(f) Suppose that $\psi(12)=(i j)$, prove that, after possibly swapping i and j, that $\psi(13)=(i k)$ for some $k \notin\{i, j\}$.
(g) Let $g \in S_{n}$ denote any element with $g(i)=1, g(j)=2$, and $g(k)=3$. Let ϕ_{g} be the (inner) automorphism of S_{n} given by conjugation by g. After replacing ψ by $\phi_{g} \circ \psi$, deduce that one can assume that $\psi(12)=(12)$ and $\psi(13)=(13)$.
(h) Assume that $\psi(1 i)=(1 i)$ for all $i<k$, with $k>3$. Prove that $\psi(1 k)=(1 j)$ for some $j \geq k$. As in part (1 g), show that after replacing ψ by $\phi_{h} \circ \psi$ for some h, one can assume in addition that $\psi(1 k)=(1 k)$.
(i) Deduce that ψ is the identity, and hence that any automorphism of S_{n} (for $n \neq 6$) is given by conjugation, i.e., $\operatorname{Out}\left(S_{n}\right)=1$ for $n \neq 6$.
2. (This is due on next week's HW) Let H be a finite subgroup of G of index n. Let A be the set of left cosets G / H, and consider the left action of G on A. (See (4.2 (8)))
(a) Let $n=|G / H|$, and consider the associated homomorphism $G \rightarrow S_{G / H} \simeq S_{n}$. Prove that the kernel of this map is a subgroup of H.
(b) By considering the kernel of the map $G \rightarrow S_{n}$, deduce that G contains a normal subgroup N contained in H of index dividing $n!$ and divisible by n.
3. Let $\mathbf{D o} \simeq A_{5}$ denote the symmetry group of the Dedecahedron: Fill out the missing entries in the table below for various sets X on which Do acts transitively. Since the action of Do is transitive for each X, all stabilizers S for any point $x \in X$ are conjugate to the stabilizers of any other point. Hence they are isomorphic as subgroups; simply list a group (from our known list of groups: symmetric, alternating, dihedral, cyclic, quaternion, etc.) isomorphic to any of the stabilizers.

X	$\|X\|$	Faithful?	Stabilizer S of any x	Order of S
Dodecahedra	1	No	$S=\mathbf{D o} \simeq A_{5}$	60
Inscribed cubes				
Pairs of opposite faces				
Faces				
Vertices				
Edges				

