Week 8, Due Mon 11/27

1. Suppose that $\mathbf{Z} / m \mathbf{Z}$ is a subgroup of S_{n} for some n and $m>2$. Prove that $D_{2 m}$ is also a subgroup of S_{n}.
2. Let G be a group, and let $N \subseteq G$ be the subgroup generated by the elements $x y x^{-1} y^{-1}$ for all pairs $x, y \in G$. Prove that N is a normal subgroup, and that G / N is abelian.
3. Projective Linear Groups. Let $\mathrm{GL}_{2}(\mathbf{R})$ be the group of invertible matrices of \mathbf{R}, and let $\mathrm{SL}_{2}(\mathbf{R}) \subset \mathrm{GL}_{2}(\mathbf{R})$ denote the subgroup of matrices of determinant one.
(a) Let \mathcal{L} denote the set of lines through the origin, where $x \in \mathcal{L}$ can be thought of as $\mathbf{v R}$ for some non-zero vector v (not unique!). Prove that

$$
g \cdot[\mathbf{v R}]=[g . \mathbf{v R}]
$$

gives a well-defined action of $\mathrm{GL}_{2}(\mathbf{R})$ and $\mathrm{SL}_{2}(\mathbf{R})$ on \mathcal{L}.
(b) Prove that this action is transitive for both $\mathrm{GL}_{2}(\mathbf{R})$ and $\mathrm{SL}_{2}(\mathbf{R})$, and that the kernel consists precisely of the scalar matrices $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ in either $\mathrm{SL}_{2}(\mathbf{R})$ or $\mathrm{GL}_{2}(\mathbf{R})$.
(c) Prove that one can identify \mathcal{L} with $X=\mathbf{R} \cup \infty$ by defining the "slope" $s(\mathbf{v R})$ of the line $\mathbf{v R}$ to be $x=p / q$ when $\mathbf{v}=[p, q]$ and ∞ if $q=0$. Show that the action of $\mathrm{GL}_{2}(\mathbf{R})$ on X is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) x= \begin{cases}\frac{a x+b}{c x+d}, & x \neq-d / c \\
\infty, & x=-d / c \\
\frac{a}{c}, & x=\infty\end{cases}
$$

4. Projective Linear Groups over Finite Fields. Let p be prime, and let $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$. Note that one can add and multiply elements of \mathbf{F}_{p}. Let $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ be the group of invertible matrices over \mathbf{F}_{p}, and let $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right) \subset \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ denote the subgroup of matrices of determinant one.
(a) There are $p^{2}-1$ non-zero vectors $\mathbf{v} \in \mathbf{F}_{p}^{2}$. Let a "line" be $\mathbf{v F}{ }_{p}$, the scalar multiples of \mathbf{v}. Prove that the set \mathcal{L} of lines has cardinality $|\mathcal{L}|=p+1$.
(b) Prove that $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ and $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ act naturally on \mathcal{L} by $g \cdot\left[\mathbf{v} \mathbf{F}_{p}\right]=\left[g . \mathbf{v} \mathbf{F}_{p}\right]$.
(c) Prove that this action is transitive for both $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$ and $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$.
(d) Prove that the kernel of the action consists precisely of the scalar matrices $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ in either $\mathrm{SL}_{2}\left(\mathbf{F}_{p}\right)$ or $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$.
(e) Let $\mathrm{PGL}_{2}\left(\mathbf{F}_{p}\right)$ and $\mathrm{PSL}_{2}\left(\mathbf{F}_{p}\right)$ denote the quotient of G and H by the subgroup of scalar matrices. Prove that $\left|\mathrm{PGL}_{2}\left(\mathbf{F}_{p}\right)\right|=\left(p^{2}-1\right) p$ and $\left|\mathrm{PSL}_{2}\left(\mathbf{F}_{p}\right)\right|=6$ if $p=2$ and $\frac{1}{2}\left(p^{2}-1\right) p$ otherwise.
(f) Prove that $\mathrm{PGL}_{2}\left(\mathbf{F}_{2}\right)=\mathrm{PSL}_{2}\left(\mathbf{F}_{2}\right)=S_{3}$.
(g) Prove that $\operatorname{PGL}_{2}\left(\mathbf{F}_{3}\right)=S_{4}$ and $\operatorname{PSL}_{2}\left(\mathbf{F}_{3}\right)=A_{4}$.
(h) Prove that $\operatorname{PSL}_{2}\left(\mathbf{F}_{5}\right)=A_{5}$ and $\mathrm{PGL}_{2}\left(\mathbf{F}_{5}\right)=S_{5}$. (Hint: using that A_{6} is simple, prove that any index 6 subgroup of A_{6} or S_{6} is A_{5} or S_{5} respectively).
