Week 8, Due Mon 11/27

- 1. Suppose that $\mathbf{Z}/m\mathbf{Z}$ is a subgroup of S_n for some n and m > 2. Prove that D_{2m} is also a subgroup of S_n .
- 2. Let G be a group, and let $N \subseteq G$ be the subgroup generated by the elements $xyx^{-1}y^{-1}$ for all pairs $x, y \in G$. Prove that N is a normal subgroup, and that G/N is abelian.
- 3. Projective Linear Groups. Let $GL_2(\mathbf{R})$ be the group of invertible matrices of \mathbf{R} , and let $SL_2(\mathbf{R}) \subset GL_2(\mathbf{R})$ denote the subgroup of matrices of determinant one.
 - (a) Let \mathcal{L} denote the set of lines through the origin, where $x \in \mathcal{L}$ can be thought of as **vR** for some non-zero vector **v** (not unique!). Prove that

$$g.[\mathbf{vR}] = [g.\mathbf{vR}]$$

gives a well-defined action of $GL_2(\mathbf{R})$ and $SL_2(\mathbf{R})$ on \mathcal{L} .

- (b) Prove that this action is transitive for both $\operatorname{GL}_2(\mathbf{R})$ and $\operatorname{SL}_2(\mathbf{R})$, and that the kernel consists precisely of the scalar matrices $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ in either $\operatorname{SL}_2(\mathbf{R})$ or $\operatorname{GL}_2(\mathbf{R})$.
- (c) Prove that one can identify \mathcal{L} with $X = \mathbf{R} \cup \infty$ by defining the "slope" $s(\mathbf{vR})$ of the line \mathbf{vR} to be x = p/q when $\mathbf{v} = [p,q]$ and ∞ if q = 0. Show that the action of $\mathrm{GL}_2(\mathbf{R})$ on X is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} x = \begin{cases} \frac{ax+b}{cx+d}, & x \neq -d/c, \\ \infty, & x = -d/c, \\ \frac{a}{c}, & x = \infty. \end{cases}$$

- 4. Projective Linear Groups over Finite Fields. Let p be prime, and let $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$. Note that one can add and multiply elements of \mathbf{F}_p . Let $\mathrm{GL}_2(\mathbf{F}_p)$ be the group of invertible matrices over \mathbf{F}_p , and let $\mathrm{SL}_2(\mathbf{F}_p) \subset \mathrm{GL}_2(\mathbf{F}_p)$ denote the subgroup of matrices of determinant one.
 - (a) There are $p^2 1$ non-zero vectors $\mathbf{v} \in \mathbf{F}_p^2$. Let a "line" be $\mathbf{v}\mathbf{F}_p$, the scalar multiples of \mathbf{v} . Prove that the set \mathcal{L} of lines has cardinality $|\mathcal{L}| = p + 1$.
 - (b) Prove that $SL_2(\mathbf{F}_p)$ and $GL_2(\mathbf{F}_p)$ act naturally on \mathcal{L} by $g.[\mathbf{vF}_p] = [g.\mathbf{vF}_p]$.
 - (c) Prove that this action is transitive for both $GL_2(\mathbf{F}_p)$ and $SL_2(\mathbf{F}_p)$.
 - (d) Prove that the kernel of the action consists precisely of the scalar matrices $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ in either $SL_2(\mathbf{F}_p)$ or $GL_2(\mathbf{F}_p)$.
 - (e) Let $PGL_2(\mathbf{F}_p)$ and $PSL_2(\mathbf{F}_p)$ denote the quotient of G and H by the subgroup of scalar matrices. Prove that $|PGL_2(\mathbf{F}_p)| = (p^2 1)p$ and $|PSL_2(\mathbf{F}_p)| = 6$ if p = 2 and $\frac{1}{2}(p^2 1)p$ otherwise.
 - (f) Prove that $PGL_2(\mathbf{F}_2) = PSL_2(\mathbf{F}_2) = S_3$.
 - (g) Prove that $PGL_2(\mathbf{F}_3) = S_4$ and $PSL_2(\mathbf{F}_3) = A_4$.
 - (h) Prove that $PSL_2(\mathbf{F}_5) = A_5$ and $PGL_2(\mathbf{F}_5) = S_5$. (Hint: using that A_6 is simple, prove that any index 6 subgroup of A_6 or S_6 is A_5 or S_5 respectively).