Week 9, Due Fri 12/2

- 1. Show that the 2-Sylow subgroups of S_4 and S_5 are isomorphic to D_8 , and the 2-Sylow subgroup of A_4 and A_5 are isomorphic to the Klein 4-group.
- 2. Let H be the subset of $GL_3(\mathbf{F}_p)$ of matrices of the form:

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Prove that H is a p-Sylow subgroup of $GL_3(\mathbf{F}_p)$.
- (b) Prove that H is not normal.
- (c) Determine the number n_p of P-Sylow subgroups of $GL_3(\mathbf{F}_p)$.
- (d) Determine the normalizer of H.
- 3. Suppose that P is a normal p-Sylow subgroup of G. Suppose that H is a subgroup of G. Prove that $P \cap H$ is the unique p-Sylow subgroup of H. (4.5 (31)).
- 4. Prove that if $n < p^2$, the *p*-Sylow subgroup of S_n is abelian. Prove that if $n \ge p^2$, the *p*-Sylow subgroup of S_n is not abelian.
- 5. Let N be a normal subgroup of G, and suppose that the largest power of p dividing |N| is equal to the largest power of p dividing |G|. Prove that the p-Sylow subgroups of G are precisely the p-Sylow subgroups of N.
- 6. Prove that there do not exist any simple groups of order p^2q for distinct primes p and q. (Hint: consider the congruence restrictions from Sylow III.)
- 7. Prove that there do not exist any simple groups of the following orders. (Warning: not in order of difficulty)
 - (a) (*) 336
 - (b) 1176
 - (c) 2907
 - (d) 6545