Week 9, Due Wed 12/06

- 1. Prove that there do not exist any simple groups of the following orders. (Warning: not in order of difficulty)
 - (a) 30
 - (b) 72
 - (c) 90
 - (d) 112
 - (e) 120
 - (f) 126
 - (g) 132
 - (h) 140
 - (i) 144
 - (j) 150
 - (k) 156
 - (l) 200
 - (m) 300
 - (n) (*) 336
 - (o) 1176
 - (p) 2907
 - (q) 6545
- 2. Suppose that G is a p-group, and $H \subset G$ has index p. Prove that H is normal in G.
- 3. Let N be a normal subgroup of G, and suppose that the largest power of p dividing |N| is equal to the largest power of p dividing |G|. Prove that the p-Sylow subgroups of G are precisely the p-Sylow subgroups of N.
- 4. (*) We previously constructed groups $G = PGL_2(\mathbf{F}_9)$ and $H = PSL_2(\mathbf{F}_9)$ of orders 720 and 360.
 - (a) Prove that $H \simeq A_6$.
 - (b) Prove that H is a normal subgroup of G.
 - (c) If $g \in G \setminus H$, show that conjugation by g on H is an automorphism which is not inner.
 - (d) Prove that G is *not* isomorphic to S_6 .