\qquad
Id \#:

Math 25700 Midterm

Autumn Quarter 2023
Monday, October 23, 2023

Name:

Instructions:

Show all your work (unless otherwise noted). Make sure that your final answer is clearly indicated. This test has six problems. Good luck!

Prob.	Possible points	Score
1	10	
2	20	
3	20	
4	20	
5	30	
6	10	
TOTAL	110	

PART I: Computational Questions

(No working is required for these problems, but some partial credit is available)
Question 1. (10 points) Let $\sigma=(1,2,3)(4,5,6,7) \in S_{8}$. Find an element $\tau \in S_{8}$ such that

$$
\tau \sigma \tau^{-1}=(3,1,4,5)(9,2,6)
$$

We may also write $\sigma=(1,2,3)(4,5,6,7)(8)(9)$. We have

$$
\tau \sigma \tau^{-1}=(\tau(1), \tau(2), \tau(3))(\tau(4), \tau(5), \tau(6), \tau(7))(\tau(8))(\tau(9))
$$

Writing the element $(9,2,6)(3,1,4,5)(7)(8)$ directly underneath σ, this leads to (one of many) choices of τ as follows:

n	1	2	3	4	5	6	7	8	9
$\tau(n)$	9	2	6	3	1	4	5	7	8

with $\tau=(1,9,8,7,5)(3,6,4)$.

Question 2. (20 points)

1. Find all the conjugacy classes inside S_{6} which contain an element of order 2.

There are three conjugacy classes, given by the partitions

$$
\begin{aligned}
& 6=2+2+2 \\
& 6=2+2+1+1 \\
& 6=2+1+1+1+1
\end{aligned}
$$

2. Determine the number of elements of S_{6} of order exactly 2 .

We simply compute the orders of the conjugacy classes given in the last answer.
(a) The conjugacy class of $(* *)$ has $\binom{6}{2}=15$ elements.
(b) The conjugacy class of $(* *)(* *)$ has $\frac{1}{2!}\binom{6}{2}\binom{4}{2}=45$ elements.
(c) The conjugacy class of $(* *)(* *)(* *)$ has $\frac{1}{3!}\binom{6}{2}\binom{4}{2}\binom{2}{2}=15$ elements.

Hence there are

$$
15+45+15=75
$$

elements of order two.

PART II: Theoretical Questions

Question 3. (20 points) Let x, y be elements of a finite group G. Prove or disprove: the order of $x y$ is always equal to the order of $y x$.

Note that $x y=y^{-1}(y x) y$ is conjugate to $y x$, and conjugate elements have the same order. (Proof: if $h^{n}=e$, then $\left(g h g^{-1}\right)^{n}=g h^{n} g^{-1}=e$. Conversely, if $\left(g h g^{-1}\right)^{n}=e$, then $e=\left(g h g^{-1}\right)^{n}=g h^{n} g^{-1}$, and then $h^{n}=g^{-1} g=e$.)

Question 4. (20 points) Prove that there exist finite groups G of arbitrarily large order such that every element $g \in G$ is conjugate to its inverse g^{-1}.

Let $G=(\mathbf{Z} / 2 \mathbf{Z})^{n}$. Then every element in G has order 1 or 2 , so $g^{2}=e$, and then $g^{-1}=g$. But every element is conjugate to itself.

Alternatively: Let $G=S_{n}$. Then the conjugacy class of $g \in S_{n}$ is given by its cycle shape. But the inverse of a cycle is the cycle in the reverse order, so g^{-1} has the same cycle shape, so g^{-1} is always conjugate to g in S_{n}.

Question 5. $(10+10+10$ points) Let G be a group, and let x be a fixed element of G.

1. Let $C_{G}(x)$ denote the subset of elements in G such that $h x h^{-1}=x$. Prove that $C_{G}(x)$ is a subgroup of G.

It suffices to prove that $C_{G}(x)$ is closed under multiplication, under inverses, and is non-empty.
(a) Certainly $e x e^{-1}=x$, so $e \in C_{G}(x)$.
(b) If $a, b \in C_{G}(x)$, then

$$
a b x(a b)^{-1}=a b x b^{-1} a^{-1}=a\left(b x b^{-1}\right) a^{-1}=a x a^{-1}=x,
$$

where the last two equalities follow from $b \in C_{G}(x)$ and $a \in C_{G}(x)$.
(c) If $a \in C_{G}(x)$, then $x=a x a^{-1}$, so

$$
a^{-1} x a=a^{-1}\left(a x a^{-1}\right) a=x .
$$

Hence $C_{G}(x)$ is a subgroup.
2. Let $\{x\}$ denote the conjugacy class of G, that is, the set of elements in G which are conjugate to x, and consider $y \in\{x\}$. Let S denote the subset of elements in G such that $g x g^{-1}=y$. Prove that S is a left coset of $C_{G}(x)$ in G.

Since $y \in\{x\}$, there exists at least one $a \in S$, so $a x a^{-1}=y$. We have:

$$
\begin{aligned}
b \in S & \Leftrightarrow b x b^{-1}=y \\
& \Leftrightarrow b x b^{-1}=a x a^{-1} \\
& \Leftrightarrow a^{-1} b x b^{-1} a=x \\
& \Leftrightarrow a^{-1} b x\left(a^{-1} b\right)^{-1}=x \\
& \Leftrightarrow a^{-1} b \in C_{G}(x) \\
& \Leftrightarrow b \in a C_{G}(x),
\end{aligned}
$$

so $S=a C_{G}(x)$.

3. Deduce that

$$
|\{x\}| \cdot\left|C_{G}(x)\right|=|G| .
$$

Certainly $|G|=\left|C_{G}(x)\right| \cdot\left|G / C_{G}(x)\right|$, so it suffices to give a bijection between $y \in\{x\}$ and left cosets of $C_{G}(x)$. Let $y \mapsto S$ where S is the set of elements such that $g x g^{-1}=$ y. From the last part, S is a left coset of $C_{G}(x)$. This map is injective; if y and y^{\prime} map to the same coset S containing g then $y^{\prime}=g x g^{-1}=y$. Conversely, if $g \in G$ is any element, and $y=g x g^{-1}$, then y maps to a left coset containing g which therefore equals $g C_{G}(x)$ (because this is the only left coset containing g), and so this map is surjective as well.

Question 6. ($5+5$ points) Find (with proof) the smallest n such that the dihedral group D_{24} of order 24 is isomorphic to a subgroup of S_{n}. That is, for some $n=m$, prove that $D_{24} \simeq H \subset S_{m}$, and prove that D_{24} is not isomorphic to any subgroup of S_{m-1}.
D_{24} has an element of order 12, so it cannot be isomorphic to a subgroup of S_{6}, since S_{6} has no such element.

If $r=(1,2,3,4)(5,6,7)$, and $s=(1,4)(2,3)(5,7)$, then $s r s^{-1}=r^{-1}$ and these elements generate D_{24}.

Alternatively: Inside the dodecagon, you can inscribe four equilateral triangles 1, 2, 3, 4 and 3 square $5,6,7$. Now D_{24} permutes these four triangles and three squares, and this gives a map $D_{24} \rightarrow S_{7}$ which one can check is injective. (For a rotation to fix the squares it must have order dividing 3, and to fix the triangles it must have order dividing 4 ; on the other hand, no reflection fixes more than one square.)

