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Math 25700 Midterm
Autumn Quarter 2023

Monday, October 23, 2023

Name:

Instructions:

Show all your work (unless otherwise noted). Make sure that your final answer is clearly

indicated. This test has six problems. Good luck!

Prob. Possible Score

points

1 10

2 20

3 20

4 20

5 30

6 10

TOTAL 110
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PART I: Computational Questions

(No working is required for these problems, but some partial credit is available)

Question 1. (10 points) Let σ = (1, 2, 3)(4, 5, 6, 7) ∈ S8. Find an element τ ∈ S8

such that

τστ−1 = (3, 1, 4, 5)(9, 2, 6).

We may also write σ = (1, 2, 3)(4, 5, 6, 7)(8)(9). We have

τστ−1 = (τ(1), τ(2), τ(3))(τ(4), τ(5), τ(6), τ(7))(τ(8))(τ(9)).

Writing the element (9, 2, 6)(3, 1, 4, 5)(7)(8) directly underneath σ, this leads to (one

of many) choices of τ as follows:

n 1 2 3 4 5 6 7 8 9

τ(n) 9 2 6 3 1 4 5 7 8

with τ = (1, 9, 8, 7, 5)(3, 6, 4).
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Question 2. (20 points)

1. Find all the conjugacy classes inside S6 which contain an element of order 2.

There are three conjugacy classes, given by the partitions

6 = 2 + 2 + 2

6 = 2 + 2 + 1 + 1

6 = 2 + 1 + 1 + 1 + 1
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2. Determine the number of elements of S6 of order exactly 2.

We simply compute the orders of the conjugacy classes given in the last answer.

(a) The conjugacy class of (∗∗) has
(
6

2

)
= 15 elements.

(b) The conjugacy class of (∗∗)(∗∗) has 1

2!

(
6

2

)(
4

2

)
= 45 elements.

(c) The conjugacy class of (∗∗)(∗∗)(∗∗) has 1

3!

(
6

2

)(
4

2

)(
2

2

)
= 15 elements.

Hence there are

15 + 45 + 15 = 75

elements of order two.



Math 25700 Midterm Autumn Quarter 2023 Page 5 of 10

PART II: Theoretical Questions

Question 3. (20 points) Let x, y be elements of a finite group G. Prove or disprove:

the order of xy is always equal to the order of yx.

Note that xy = y−1(yx)y is conjugate to yx, and conjugate elements have the same

order. (Proof: if hn = e, then (ghg−1)n = ghng−1 = e. Conversely, if (ghg−1)n = e,

then e = (ghg−1)n = ghng−1, and then hn = g−1g = e.)
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Question 4. (20 points) Prove that there exist finite groups G of arbitrarily large

order such that every element g ∈ G is conjugate to its inverse g−1.

Let G = (Z/2Z)n. Then every element in G has order 1 or 2, so g2 = e, and

then g−1 = g. But every element is conjugate to itself.

Alternatively: Let G = Sn. Then the conjugacy class of g ∈ Sn is given by its

cycle shape. But the inverse of a cycle is the cycle in the reverse order, so g−1 has

the same cycle shape, so g−1 is always conjugate to g in Sn.
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Question 5. (10+10+10 points) Let G be a group, and let x be a fixed element of G.

1. Let CG(x) denote the subset of elements in G such that hxh−1 = x. Prove

that CG(x) is a subgroup of G.

It suffices to prove that CG(x) is closed under multiplication, under inverses,

and is non-empty.

(a) Certainly exe−1 = x, so e ∈ CG(x).

(b) If a, b ∈ CG(x), then

abx(ab)−1 = abxb−1a−1 = a(bxb−1)a−1 = axa−1 = x,

where the last two equalities follow from b ∈ CG(x) and a ∈ CG(x).

(c) If a ∈ CG(x), then x = axa−1, so

a−1xa = a−1(axa−1)a = x.

Hence CG(x) is a subgroup.
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2. Let {x} denote the conjugacy class of G, that is, the set of elements in G which

are conjugate to x, and consider y ∈ {x}. Let S denote the subset of elements

in G such that gxg−1 = y. Prove that S is a left coset of CG(x) in G.

Since y ∈ {x}, there exists at least one a ∈ S, so axa−1 = y. We have:

b ∈ S ⇔ bxb−1 = y

⇔ bxb−1 = axa−1

⇔ a−1bxb−1a = x

⇔ a−1bx(a−1b)−1 = x

⇔ a−1b ∈ CG(x)

⇔ b ∈ aCG(x),

so S = aCG(x).
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3. Deduce that

|{x}| · |CG(x)| = |G|.

Certainly |G| = |CG(x)| · |G/CG(x)|, so it suffices to give a bijection between y ∈ {x}
and left cosets of CG(x). Let y 7→ S where S is the set of elements such that gxg−1 =

y. From the last part, S is a left coset of CG(x). This map is injective; if y and y′

map to the same coset S containing g then y′ = gxg−1 = y. Conversely, if g ∈ G is

any element, and y = gxg−1, then y maps to a left coset containing g which therefore

equals gCG(x) (because this is the only left coset containing g), and so this map is

surjective as well.
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Question 6. (5+5 points) Find (with proof) the smallest n such that the dihedral

group D24 of order 24 is isomorphic to a subgroup of Sn. That is, for some n = m,

prove that D24 ≃ H ⊂ Sm, and prove that D24 is not isomorphic to any subgroup

of Sm−1.

D24 has an element of order 12, so it cannot be isomorphic to a subgroup of S6,

since S6 has no such element.

If r = (1, 2, 3, 4)(5, 6, 7), and s = (1, 4)(2, 3)(5, 7), then srs−1 = r−1 and these

elements generate D24.

Alternatively: Inside the dodecagon, you can inscribe four equilateral triangles 1, 2, 3, 4

and 3 square 5, 6, 7. Now D24 permutes these four triangles and three squares, and

this gives a map D24 → S7 which one can check is injective. (For a rotation to fix

the squares it must have order dividing 3, and to fix the triangles it must have order

dividing 4; on the other hand, no reflection fixes more than one square.)


