Problems

- 1. Prove that $[\mathbf{Q}(\zeta_{20}):\mathbf{Q}]=8$, and write down a primitive root for every subfield of $\mathbf{Q}(\zeta_{20})$.
- 2. Find a finite group G and a normal subgroup H such that $\Gamma = G/H$ is not abstractly isomorphic to any subgroup of G.
- 3. Let L/K be a finite separable extension, and let M/K denote the Galois closure of G. Let $H = \operatorname{Gal}(M/L)$.
 - (a) Prove that there exists a subfield $K \subsetneq E \subsetneq L$ if and only if there exists a subgroup $H \subsetneq \Gamma \subsetneq G$.
 - (b) Determine whether there exists a subfield $K \subsetneq E \subsetneq L$ in the following situations:
 - i. [L:K] = 4 and [M:K] = 24
 - ii. [L:K] = 6 and [M:K] = 24
 - iii. [L:K] = 6 and [M:K] = 60.
- 4. Suppose that $x^3 2$ is an irreducible polynomial in $\mathbf{F}_p[x]$. Prove that $p \equiv 1 \mod 3$.
- 5. Let L/K be an algebraic extension, and let α and β be elements of L. Let $A = K(\alpha, \beta)$ and $B = K(\alpha\beta, \alpha + \beta)$, so there are inclusions $K \subset B \subset A \subset L$. Prove that [B:A] = 1 or 2, and give examples to show that both cases may occur.
- 6. Let K and L be fields such that there exists an inclusion map $\phi: K \to L$.
 - (a) If $K = \mathbf{Q}$, prove that the degree [L : K] does not depend on ϕ . In particular, the notation $[L : \mathbf{Q}]$ is unambiguous.
 - (b) If $[K : \mathbf{Q}] < \infty$, prove that the degree [L : K] does not depend on ϕ .
 - (c) If $K = \mathbf{Q}(t)$, give examples to show that [L:K] may depend on ϕ .
- 7. Let $f(x) = a_d x^d + \ldots + a_0 \in \mathbf{Z}[x]$ be an polynomial of degree d, and α a real root of f(x).
 - (a) Prove that there exists a real constant m > 0 such that $|f(\alpha + \epsilon)| \le m\epsilon$ for any sufficiently small real number ϵ .
 - (b) If p and q are integers, and p/q is not a root of f(x), prove that $\left| f\left(\frac{p}{q}\right) \right| \geq \frac{1}{q^d}$.
 - (c) Deduce that, for p, q with (p,q) = 1 and p and q sufficiently large, that $\left|\alpha \frac{p}{q}\right| \ge \frac{1}{mq^d}$.
 - (d) (**Liouville**) Suppose that $\beta \in \mathbf{R}$ is a real number with the property that, for any $\epsilon > 0$, there exist infinitely many pairs of integers p and q with (p,q) = 1 such that

$$\left|\beta - \frac{p}{q}\right| \le \frac{\epsilon}{q^d}.$$

Prove that β is *not* the root of any polynomial of degree at most d.

Show that one can write $\beta_n = p_n/q_n$ for integers p_n and q_n with $(p_n, q_n) = 1$ and $q_n = 10^{n!}$. Prove that

$$\left|\beta - \frac{p_n}{q_n}\right| = |\beta - \beta_n| \le \frac{2}{10^{(n+1)!}} = \frac{2}{q_n^{n+1}}.$$

- (f) Deduce that β is not the root of any polynomial of any degree with rational coefficients, i.e. that β is transcendental.
- 8. Let $\epsilon, \delta > 0$ be real numbers. Consider the real interval S := [0, 1]. Around every rational number $p/q \in S$, consider an interval of radius $\epsilon/q^{2+\delta}$. Then the union $S(\epsilon, \delta)$ of all such intervals has area at most

$$\epsilon \left(1 + \frac{1}{2^{1+\delta}} + \frac{1}{3^{1+\delta}} + \ldots\right) = \epsilon \cdot \zeta(1+\delta) < \infty.$$

It follows that $S(\delta) = \bigcap_{\epsilon > 0} S(\epsilon, \delta)$ has measure zero, even though it is non-empty (it contains β). It follows that, with probability one, a random $\gamma \in S$ satisfies $\left| \gamma - \frac{p}{q} \right| > \frac{\epsilon}{q^{2+\delta}}$ for some $\epsilon > 0$ and all p, q. If this were true for π , then $q^3 |\pi - p/q|$ is bounded away from 0. Do you think this is true? If so, what is your guess for the p and q that minimize this expression?

9. Prove that if $x = 2\cos(\theta)$, then $x^2 - 2 = 2\cos(2\theta)$ and $x^3 - 3x = 2\cos(3\theta)$. In particular, the roots of $x^3 - 3x + 1 = 0$ are given by $\alpha_1 = 2\cos(2\pi/9)$, $\alpha_2 = 2\cos(4\pi/9)$, and $\alpha_3 = 2\cos(8\pi/9)$. It follows that α_1 , α_2 , and α_3 are roots of the degree 8 polynomial

$$(((t^2-2)^2-2)^2-2)=t.$$

Give explicit expressions for the other 5 roots.

- 10. Chebyshev Polynomials. Let $t = e^{i\theta}$, so that $x = \cos \theta = (t + t^{-1})/2$.
 - (a) Let $T_n = (t^n + t^{-n})/2$. Prove that T_n satisfies the recurrence relation

$$T_{n+1} = 2(t+t^{-1})T_n - T_{n-1} = 2xT_n - T_{n-1}.$$

- (b) Deduce that $T_n = T_n(x)$ is a polynomial in x, with $T_0 = 1$, $T_1 = x$, $T_2 = 2x^2 1$, $T_3 = 4x^3 3x$, etc.
- (c) Prove that $T_n(\cos \theta) = \cos n\theta$.
- (d) Prove that $T_n(x)$ in the interval [-1,1] takes values in [-1,1].
- (e) Prove that $T_n(x)$ has degree n and has exactly n roots in the interval [-1,1].
- (f) Prove that the splitting field L of $T_n(x)$ over \mathbf{Q} is contained in $\mathbf{Q}(\zeta_{4n})$, and that that L is precisely the fixed field of complex conjugation $-1 \in (\mathbf{Z}/4n\mathbf{Z})^{\times}$. (Hint: what is the relationship between the splitting field of $T_n(x)$ and $T_n((t+t^{-1})/2)$?)
- (g) Prove that, if $(n, m) \neq (0, 0)$,

$$\int_{-1}^{-1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}} = \frac{\pi \delta(n-m)}{2},$$

where $\delta(x) = 0$ if x = 0 and 1 if x = 1.

- 11. Examples of Function Fields
 - (a) Let $K = \mathbf{Q}(u)$ and $L = \mathbf{Q}(t)$. Prove that the inclusion $K \to L$ given by

$$u \mapsto t^2$$

makes L/K an extension of degree 2 with $\operatorname{Gal}(L/K) = \mathbf{Z}/2\mathbf{Z}$. Compute the action of $\operatorname{Gal}(L/K)$ on t.

(b) Let $K = \mathbf{Q}(u)$ and $L = \mathbf{Q}(t)$. Prove that the inclusion $K \to L$ given by

$$u \mapsto \frac{1 - 3t + t^3}{t(t - 1)}$$

makes L/K an extension of degree 3. (Hint: write down a cubic over $\mathbf{Q}(u)$ with root t.)

- (c) In the last example, prove that L/K is Galois with $Gal(L/K) = \mathbb{Z}/3\mathbb{Z}$.
- (d) In the last example, prove that there is an element $\sigma \in \operatorname{Gal}(L/K)$ of order 3 such that

$$\sigma t = \frac{1}{1-t}.$$

12. Let $\alpha_0 = 2$, $\alpha_1 = -2$, $\alpha_2 = 0$, $\alpha_3 = \sqrt{2}$, and

$$\alpha_{n+1} = \sqrt{2 + \alpha_n}.$$

Prove that $\alpha_n = 2\cos(2\pi n/2^n) = \zeta_{2^n} + \zeta_{2^n}^{-1}$ where $\zeta_{2^n} = \exp(2\pi i/2^n)$.

- 13. Let L/K be a finite extension of degree n. Fix a basis for L/K, and let $\alpha \in L$.
 - (a) Prove that the multiplication by α map: $\psi(\alpha): L \to L$ is a K-linear map.
 - (b) With respect to the given basis, deduce that there exists an $n \times n$ matrix $M(\alpha) \in M_n(K)$ corresponding to $\psi(\alpha)$.
 - (c) Define the norm $N_{L/K}(\alpha)$ and trace $\text{Tr}_{L/K}(\alpha)$ of α from L to K to be

$$N_{L/K}(\alpha) = \det(M(\alpha)), \quad \operatorname{Tr}_{L/K}(\alpha) = \operatorname{Trace}(M(\alpha)).$$

Prove that these quantities do not depend on the choice of basis for L/K.

- (d) Prove that $N_{L/K}(\alpha) = 0$ if and only if $\alpha = 0$.
- (e) If $x \in K$, show that $\operatorname{Tr}_{L/K}(x) = x[L:K]$ and $N_{L/K}(x) = x^{[L:K]}$.
- (f) Prove that $N_{L/K}(\alpha\beta) = N_{L/K}(\alpha)N_{L/K}(\beta)$ and $\text{Tr}_{L/K}(\alpha+\beta) = \text{Tr}_{L/K}(\alpha) + \text{Tr}_{L/K}(\beta)$.
- (g) If $K = \mathbf{R}$ and $L = \mathbf{C}$, prove that $N_{L/K}(a + bi) = a^2 + b^2$.
- (h) If $K = \mathbf{Q}$ and $L = \mathbf{Q}(\sqrt{D})$, prove that $N_{L/K}(a + b\sqrt{D}) = a^2 b^2D$.
- (i) If L/K is an extension of finite fields, prove that there exists at least one element $x \in L$ such that $\mathrm{Tr}_{L/K}(x) \neq 0$. If L/K is a separable extension, prove that there exists at least one element $x \in L$ such that $\mathrm{Tr}_{L/K}(x) \neq 0$.
- 14. In the context of the previous question, let A be the matrix associated to $\psi(\alpha)$ and some choice of basis.
 - (a) Let P(x) denote the characteristic polynomial of A. Prove that $P(\alpha) = 0$.
 - (b) Suppose that $K(\alpha) = L$. Prove that P(x) is the minimal polynomial of α .
 - (c) Suppose that $E = K(\alpha)$ and [L : E] = m. Prove that $P(x) = Q(x)^m$, where Q(x) is the minimal polynomial of α . Hint: first consider the map $\psi_E(\alpha) : E \to E$ on E induced by multiplication by α , and show that $\psi(\alpha) = \psi_L(\alpha)$ with respect to a choice of basis is given by m block copies of $\psi_E(\alpha)$.
- 15. Let $f(x) = x^3 ax^2 + bx c$ be an irreducible degree 3 polynomial over **Q**. Let L be a splitting field of f(x), and let $K = \mathbf{Q}(\alpha) \subset L$ for one of the roots α of f(x).

(a) Write f(x) as $(x - \alpha)(x - \beta)(x - \gamma)$ in L[X]. Prove that

$$\alpha + \beta + \gamma = a,$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = b,$$

$$\alpha\beta\gamma = c.$$

(b) Let $\delta = (\alpha - \beta)(\alpha - \gamma)(\beta - \gamma)$. Prove that

$$\Delta := \delta^2 = a^2b^2 - 4b^3 - 4a^3c + 18abc - 27c^2.$$

- (c) Let $E = \mathbf{Q}(\delta) \subset L$. Prove that $[E : \mathbf{Q}] \leq 2$, and that $[E : \mathbf{Q}] = 2$ if and only if $\Delta \in \mathbf{Q}$ is a perfect square.
- (d) Suppose that L = K. Prove that $\Delta \in \mathbf{Q}$ is a perfect square.
- (e) For a positive integer n, show that $x^3 nx + 1$ is irreducible unless n = 2.
- (f) Let L be a splitting field of $x^3 nx + 1$. Prove that $[L: \mathbf{Q}] = 6$ unless either:
 - i. n=2, in which case $[L:\mathbf{Q}]=2$.
 - ii. n = 3, in which case $[L : \mathbf{Q}] = 3$.

Hint: for n = 2, factor the polynomial, and for n = 3, use the first exercise. For all other n, prove that the discriminant

$$\Delta = -27 - 4n^3$$

is not a perfect square. Writing $\Delta = \delta^2$, consider the quantity $X^3 + Y^3 - Z^3$ where $Z = \delta/3 + 3$, $Y = \delta/3 - 3$, and X = -2n.

- 16. Find, explicitly, the subgroups of the following groups:
 - (a) $({\bf Z}/16{\bf Z})^{\times}$
 - (b) $({\bf Z}/11{\bf Z})^{\times}$
 - (c) $({\bf Z}/60{\bf Z})^{\times}$
 - (d) $(\mathbf{Z}/25\mathbf{Z})^{\times}$
- 17. Draw a diagram of all the subfields of $\mathbf{Q}(\zeta_{13})$, with a line between any pair of fields $E \subset F$ indicating the degree of the corresponding extension.
- 18. Draw a diagram of all the subfields of $\mathbf{Q}(\zeta_{17})$, with a line between any pair of fields $E \subset F$ indicating the degree of the corresponding extension.
- 19. Express the following trigonometric values in terms of roots of unity and also in terms of radicals.
 - (a) $tan(60^\circ)$
 - (b) $\sin(36^{\circ})$.
 - (c) $\cos(30^{\circ})$.
 - (d) $\cos(10^{\circ})$.
- 20. Let $K = \mathbf{Q}(\sqrt{2})$ and $L = \mathbf{Q}(\sqrt[4]{2})$. Prove that K/\mathbf{Q} is a splitting field, and L/K is a splitting field, but L/\mathbf{Q} is not a splitting field of any polynomial over \mathbf{Q} .
- 21. (**Primitive Roots**) Let $K = \mathbf{F}_p$. Since K^{\times} is cyclic, there exist elements $\varepsilon \in K^{\times}$ which are multiplicative generators for K^{\times} ; these are called primitive roots. Let ε a primitive root.

- (a) Show that the set $\{1, \varepsilon, \varepsilon^2, \dots, \varepsilon^{p-2}\}$ in K is precisely the set $\{1, 2, 3, 4, \dots, p-1\}$.
- (b) Suppose that $m \not\equiv 0 \mod p 1$. Prove that

$$1 + \varepsilon^m + \varepsilon^{2m} + \varepsilon^{3m} + \ldots + \varepsilon^{(p-2)m} = 0 \in K.$$

(Hint: multiply by $\varepsilon^m - 1$)

(c) Deduce that, for all $m \geq 1$, there is a congruence

$$1^{m} + 2^{m} + 3^{m} + \ldots + (p-1)^{m} \equiv \begin{cases} 0 \mod p, & m \not\equiv 0 \mod p - 1, \\ -1 \mod p, & m \equiv 0 \mod p - 1. \end{cases}$$

- 22. (Frobenius) Let $q = p^m$, and let $f(x) \in \mathbf{F}_q[x]$.
 - (a) Prove that every element α in \mathbf{F}_q satisfies $\alpha^q = \alpha$.
 - (b) Let K/\mathbf{F}_q be the splitting field of f(x), and let $\beta \in K$ be a root of f(x). Prove that β^q is also a root of f(x).
- 23. Let $f(x) = x^4 + x + 1 \in \mathbf{F}_2[x]$.
 - (a) Prove that f(x) is irreducible.
 - (b) Let K be the splitting field of f(x). Prove that $K \simeq \mathbf{F}_{16}$.
 - (c) Let α be a root of f(x) in K. Determine the order of $\alpha \in K^{\times}$.
- 24. (Algebraic Integers) Let K/\mathbb{Q} be an algebraic extension. For $\alpha \in K$, let $\mathbb{Z}[\alpha] \subset K$ denote the subring generated by the image of $\mathbb{Z}[x] \to K$ under the map that sends x to α (equivalently, elements of $\mathbb{Z}[\alpha]$ are given by polynomials in α with integral roots). Say that α is an algebraic integer if $\mathbb{Z}[\alpha]$ considered as a \mathbb{Z} -module (equivalently, abelian group) is finitely generated.
 - (a) Prove that $\alpha \in K$ is an algebraic integer if and only if it is a root of a *monic* polynomial $f(x) \in \mathbf{Z}[x]$.
 - (b) Prove that $\alpha \in K$ is an algebraic integer if and only if it is a root of an *irreducible* monic polynomial $f(x) \in \mathbf{Z}[x]$.
 - (c) If $\alpha \in \mathbf{Q} \subset K$, prove that α is an algebraic integer if and only if it is an actual integer.
 - (d) If α and β are algebraic integers in K, prove that the ring $\mathbf{Z}[\alpha, \beta]$ is finitely generated as a \mathbf{Z} -module.
 - (e) Deduce that the sum and product of two algebraic integers are algebraic.
 - (f) Let $\mathcal{O}_K \subset K$ denote the set of algebraic integers. Deduce that \mathcal{O}_K is a subring of K.
 - (g) Prove that the fraction field of \mathcal{O}_K is K.
 - (h) Suppose $[K: \mathbf{Q}] < \infty$. It is a non-trivial fact (why is it non-trivial?) that \mathcal{O}_K is finitely generated as a **Z**-module. Using, this, prove that as **Z**-modules $\mathcal{O}_K \simeq \mathbf{Z}^d$ where $d = [K: \mathbf{Q}]$.
 - (i) Let D be a square-free integer. Let $K = \mathbf{Q}(\sqrt{D})$. Prove that \mathcal{O}_K is equal to the ring $\mathbf{Z}[\sqrt{D}]$ if $D \equiv 2, 3 \mod 4$ and $\mathbf{Z}\left\lceil \frac{D + \sqrt{D}}{2} \right\rceil$ otherwise.
- 25. How many irreducible factors does $X^{342} 1$ have over \mathbf{F}_7 ? What about $X^{343} 1$? (Hint: what are the splitting fields of these polynomials?)
- 26. Let E/\mathbf{Q} and F/\mathbf{Q} be subfields of a fixed, finite extension K/\mathbf{Q} . Prove that $[E:\mathbf{Q}] \geq [E.F:F]$.

- 27. Determine all automorphisms of the following fields.
 - (a) $\mathbf{Q}(\sqrt[3]{2})$.
 - (b) $\mathbf{Q}(2\cos(2\pi/7))$.
 - (c) $\mathbf{Q}(\sqrt{1+\sqrt{2}})$.
 - (d) $\mathbf{Q}(\sqrt[3]{1+\sqrt{2}})$.
- 28. [Artin-Schreier extensions] Let E be a field of characteristic p.
 - (a) If $\alpha \in E$, prove that the polynomial $p(x) = x^p x \alpha$ is separable.
 - (b) If β is a root of p(x), show that $\beta + 1$ is also a root of p(x).
 - (c) Deduce that either p(x) splits completely in E or p(x) is irreducible.
 - (d) Deduce that the splitting field F/E of p(x) is either E or is cyclic of degree p.
 - (e) Show that the splitting field of $x^p x 1$ over \mathbf{F}_p is \mathbf{F}_q where $q = p^p$.
- 29. (**Primitive Element Theorem, I**) Suppose that L/K is a finite extension, and suppose additionally that there only exists **finitely many** intermediate fields E with $K \subset E \subset L$. Assume that K is infinite. Say that an element $\theta \in L$ is *primitive* if $L = K(\theta)$. We prove (under the assumptions of the problem) that a primitive element exists.
 - (a) Let $K_0 = K$. If $K_0 = L$, show (this is obvious) that L has a primitive element. If $K_0 \neq L$, show that there exists an element $\theta_1 \in L \setminus K_0$. Let $K_1 = K_0(\theta_1)$. If $K_1 = L$, show (this is obvious) that L has a primitive element. Assume that $K \subsetneq K_1 \subsetneq \ldots \subsetneq K_n \subset L$, and assume that $K_n = K(\theta_n)$. If $K_n = L$, show (this is obvious) that L has a primitive element.
 - (b) If $K_n \neq L$, show there exists an element $\alpha \in L \setminus K_n$. For $\lambda \in K$, let $K_{\lambda} := K(\theta_n + \lambda \alpha)$. Prove that there exist $\lambda_1 \neq \lambda_2$ such that $K_{\lambda_1} = K_{\lambda_2}$.
 - (c) If there is an equality of fields

$$K(\theta_n + \lambda_1 \alpha) = K(\theta_n + \lambda_2 \alpha),$$

prove that both fields are isomorphic to $K(\theta_n, \alpha)$.

- (d) Deduce that there exists $\lambda \in K$ and $\theta_{n+1} = \theta_n + \lambda \alpha$ so that $K_{n+1} := K_n(\theta_{n+1})$ strictly contains K_n .
- (e) Deduce (under the conditions of the problem) that L/K has a primitive element.
- (f) Find a primitive element for the following extensions:
 - i. The splitting field of $X^3 2$ over **Q**.
 - ii. The splitting field of $X^3 2$ over \mathbf{F}_7 .
 - iii. The splitting field of $(X^2 2)(X^2 3)$ over **Q**.
- 30. (Primitive Element Theorem, II) Let L/K be a finite extension.
 - (a) Assume that L/K is separable that is, any element $\alpha \in L$ is the root of a separable irreducible polynomial in L. Prove that there exists a normal extension (splitting field of a separable polynomial) M/K containing L.
 - (b) Deduce that if L/K is separable, then L/K has only finitely many intermediate subfields.
 - (c) Deduce that if L/K is separable, then L/K contains a primitive element.
 - (d) Deduce that if Char(K) = 0 or K is finite, then L/K contains a primitive element.

- 31. (14.4 (5)) Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois group is a p-group (i.e., the degree [K : F] is a power of p). Such an extension is called a p-extension (note that p-extensions are Galois by definition).
 - (a) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension of F.
 - (b) Give an example to show that (a) need not hold if [K : F] is a power of p but K/F is not Galois.
- 32. Let f(x) be a separable irreducible polynomial of degree d with Galois group G (That is, G is the Galois group of the splitting field of f(x)). What are the possible values of d for the following groups G?
 - (a) The quaternion group G = Q of order 8.
 - (b) The alternating group $G = A_4$ of order 24.
 - (c) An abelian group G = A of order 60.
- 33. (C is algebraically closed). Do *not* assume that C is algebraically closed for this question. You may assume the intermediate value theorem for \mathbf{R} .
 - (a) Let $g(x) \in \mathbb{C}[x]$ be a quadratic polynomial. Prove directly that g(x) is reducible.
 - (b) Let $f(x) \in \mathbf{R}[x]$ be a polynomial. If deg f(x) is odd, prove that f(x) has a root in \mathbf{R} .
 - (c) Deduce that if K/\mathbf{R} is a finite extension, then $[K : \mathbf{R}]$ is even or $K = \mathbf{R}$.
 - (d) Let L/\mathbf{R} be a finite Galois extension with $G = \operatorname{Gal}(L/\mathbf{R})$. Prove that G is a power of 2. (Hint: use part (33c)).
 - (e) Deduce that if K/\mathbb{C} is any non-trivial finite extension, and L/\mathbb{R} is the Galois closure of K, then $G = \operatorname{Gal}(L/\mathbb{C})$ is a non-trivial finite 2-group.
 - (f) Deduce that if K/\mathbb{C} is any non-trivial finite extension, there exists a non-trivial quadratic extension E/\mathbb{C} .
 - (g) Conclude from part (33a) that K/\mathbb{C} has no non-trivial finite extensions.
- 34. Suppose that $K = \mathbf{F}_p(X, Y)$, the field of rational functions in two variables X and Y.
 - (a) Let $L = \mathbf{F}_p(X^{1/p}, Y^{1/p})$. Show that L is the splitting field of $(T^p X)(T^p Y)$.
 - (b) Prove that $[L:K] = p^2$.
 - (c) Prove that, if $\eta \in L$ is any element, then $\eta^p \in K$.
 - (d) Prove that, if $\eta \in L$ is any element, then $[K(\eta):K]=1$ or p.
 - (e) Prove that there are infinitely many subfields $K \subset E \subset L$.
- 35. Let a(x) and b(x) be irreducible polynomials of degree n over \mathbf{Q} , and let $A = \mathbf{Q}[x]/a(x)$, $B = \mathbf{Q}[x]/b(x)$. Suppose that K is the splitting field of both a(x) and b(x). Let $G = \mathrm{Gal}(K/\mathbf{Q})$, $H_A = \mathrm{Gal}(K/A)$, and $H_B = \mathrm{Gal}(K/B)$.
 - (a) Prove that $\bigcap \sigma H \sigma^{-1} = 1$. for $H = H_A$ and H_B .
 - (b) Prove that $|H_A| = |H_B|$.
 - (c) Prove that $A \simeq B$ if and only if H_A is conjugate to H_B in G.
 - (d) Prove that if n=2 or n=3, then $A \simeq B$.

- (e) Prove that if n = 4, and $G = D_8$, then A is not necessarily isomorphic to B.
- (f) Give an explicit example of polynomials a(x) and b(x) of degree 4 such that A is not isomorphic to B.
- (g) Prove that if G is abelian, then A = B = K.
- (h) Prove that if $G = S_n$, then A is isomorphic to B provided that $n \neq 6$.
- 36. (14.4 (5)) Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois group is a p-group (i.e., the degree [K : F] is a power of p). Such an extension is called a p-extension (note that p-extensions are Galois by definition).
 - (a) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension of F.
 - (b) Give an example to show that (a) need not hold if [K:F] is a power of p but K/F is not Galois.
- 37. Let f(x) be a separable irreducible polynomial of degree d with Galois group G (That is, G is the Galois group of the splitting field of f(x)). What are the possible values of d for the following groups G?
 - (a) The quaternion group G = Q of order 8.
 - (b) The alternating group $G = A_4$ of order 24.
 - (c) An abelian group G = A of order 60.
- 38. Let $F = \mathbf{C}(x_1, x_2, \dots, x_n)$ be the field of fractions of the polynomial ring $\mathbf{C}[x_1, \dots, x_n]$. Let s_i denote the elementary symmetric polynomials in the x_i , that is,

$$s_1 = x_1 + x_2 + \dots + x_n$$

 $s_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$
 \vdots
 $s_n = x_1 x_2 \dots x_n$.

Let $E = \mathbf{C}(s_1, \ldots, s_n)$. Prove that, with respect to the natural inclusion $E \subset F$, that:

- (a) F/E is a finite Galois extension. (Hint: identify it as a splitting field)
- (b) $Gal(F/E) = S_n$.
- 39. Let K/\mathbf{Q} be a Galois extension.
 - (a) If $[K : \mathbf{Q}] = 2009$, prove that $Gal(K/\mathbf{Q})$ is abelian.
 - (b) If $[K: \mathbf{Q}] = 2010$, prove that K contains an extension E with $[E: \mathbf{Q}] = 2$.
 - (c) If $[K:\mathbf{Q}] = 2011$, prove that $Gal(K/\mathbf{Q})$ is abelian.
 - (d) If $[K : \mathbf{Q}] = 2012$, prove that K contains an extension E with $[E : \mathbf{Q}] = 503$.
 - (e) If $[K : \mathbf{Q}] = 2013$, prove that K contains an extension E with $[E : \mathbf{Q}] = 3$.
- 40. Determine $Aut(K/\mathbb{Q})$ for the following fields, and determine which ones are Galois.
 - (a) $\mathbf{Q}(\sqrt[3]{2})$.
 - (b) $\mathbf{Q}(2\cos(2\pi/7))$.

- (c) $\mathbf{Q}(\sqrt{1+\sqrt{2}})$.
- (d) $\mathbf{Q}(\sqrt[3]{1+\sqrt{2}})$.
- 41. Prove that the Galois group of the splitting field of $x^4 + ax^2 + b$ is a subgroup of $D_8 \subset S_4$.
- 42. Let f(x) be an irreducible separable polynomial over K with splitting field L. Suppose that Gal(L/K) = Q, the quaternion group of order 8. Determine the possible degrees of f(x).
- 43. Let L/K be an extension, and let $\alpha, \beta \in L$ be elements with $[K(\alpha) : K] = 2$ and $[K(\beta) : K] = 3$. Determine the possible degrees $[K(\alpha + \beta) : K]$.
- 44. [Field Embeddings, I] Let E/\mathbf{Q} be a finite extension. Let K/\mathbf{Q} be a Galois extension with Galois group $G = \operatorname{Gal}(K/\mathbf{Q})$. Let $N = \operatorname{Hom}(E, K)$ be the set of ring homomorphisms from E to K (so 1 maps to 1).
 - (a) Prove that either N is empty, or there exists an inclusion from E to K.
 - (b) If $\phi \in N$, show that $\phi(E)$ is a subfield of K.
 - (c) Prove that if $\sigma \in G$, and $\phi : E \to K$ is an element of N, then the map $\sigma \cdot \phi$ defined by sending x to $\sigma(\phi(x))$ is an element of N.
 - (d) Prove that this construction gives a group action of G on N.
 - (e) Prove that the stabilizer of ϕ is $Gal(K/\phi(E))$.
 - (f) Prove that G acts transitively on N.
 - (g) Prove that either N is empty, or $|N| = [E : \mathbf{Q}]$.
 - (h) Prove that for any field K (not necessarily finite or Galois) containing the splitting field of E, N = Hom(E, K) has order $[E : \mathbf{Q}]$.
 - (i) If $K = \mathbf{C}$, one can write $N = N_{\mathbf{R}} \cup N_{\mathbf{C}}$, where $N_{\mathbf{R}} = \operatorname{Hom}(E, \mathbf{R})$, and $N_{\mathbf{C}}$ consists of the homomorphisms from E to \mathbf{C} which do not land in \mathbf{R} . Prove that $|N_{\mathbf{C}}|$ is even. Thus, attached to E, there are a pair of integers (r_1, r_2) such that $r_1 = |N_{\mathbf{R}}|$ and $2r_2 = |N_{\mathbf{C}}|$, so $[E : \mathbf{Q}] = r_1 + 2r_2$. The pair (r_1, r_2) is called the *signature* of E. If E has signature $(r_1, 0)$, we say that E is totally real, and if E has signature $(0, r_2)$ we say that E is totally complex.
 - (j) Prove that if E/\mathbf{Q} is a finite Galois extension, then E either has signature (n,0) (where $n = [E : \mathbf{Q}]$), or $[E : \mathbf{Q}] = n = 2m$ and E has signature (0,m).
 - (k) Suppose that E/\mathbf{Q} is a finite Galois extension with $\Gamma = \operatorname{Gal}(E/\mathbf{Q})$. Let K be any field (not necessarily finite or Galois) containing the splitting field of E. Prove that there is an action of $\Gamma = \operatorname{Gal}(E/\mathbf{Q})$ on $N = \operatorname{Hom}(E, K)$ given by

$$\sigma.\phi = \phi(\sigma^{-1}(x)).$$

(Note that the inverse is there to ensure that $gh.(\phi) = g.(h.\phi)$.)

- (1) Suppose that E/\mathbf{Q} is a Galois extension of degree 2m with signature (0, m), and $\Gamma = \operatorname{Gal}(E/\mathbf{Q})$. Let Γ act on $N = N_{\mathbf{C}}$ as in part 44k.
 - i. Show that for every $\phi \in N = N_{\mathbf{C}}$, there exists a unique element $c \in \Gamma$ of order two such that $c.\phi$ is ϕ composed with complex conjugation on \mathbf{C} .
 - ii. Show that the elements c obtained in this way for all $\phi \in N$ are conjugate, and moreover every element that is conjugate to c occurs in this way.
 - iii. Let Φ be the smallest normal subgroup of Γ containing (any) c. Prove that E^{Φ} is totally real. Moreover, if $F \subset E$ is totally real, then $F \subseteq E^{\Phi}$.

- iv. If E/\mathbf{Q} is Galois with abelian Galois group Γ , then either E is totally real, or there exists a unique totally real subfield $E^+ \subset E$ such that $[E:E^+]=2$.
- v. If E/\mathbf{Q} is Galois with $G=A_5$, and E is the splitting field of a degree 5 irreducible polynomial p(x), prove that $F=\mathbf{Q}[x]/p(x)$ has signature (5,0) or (1,2).
- 45. [Field Embeddings, II] Let E/\mathbf{Q} be a finite extension. Let K/\mathbf{Q} be a Galois extension with Galois group $G = \text{Gal}(K/\mathbf{Q})$. Let M be the set of subfields of K that are isomorphic to E.
 - (a) Prove that M is empty, or there exists an inclusion from E to K.
 - (b) Prove that G acts on M by sending $F \in M$ to $\phi(F)$.
 - (c) If $F \in M$, prove that the stabilizer of F is the normalizer N_F of Gal(K/F).
 - (d) Prove that G acts transitively on M.
 - (e) Prove that $|M| = [G: N_F]$, for any $F \in M$.
 - (f) Prove that |M| = 1 if and only if E/\mathbf{Q} is Galois.
 - (g) If $F \in M$, let $H = K^{N_F}$. Prove that:
 - i. H is contained in F.
 - ii. F/H is Galois.
 - iii. If $H' \subset F$ is any subfield of F such that F/H' is Galois, then H' contains H.
 - iv. H does not depend on F.
 - (h) Deduce that for any field E/\mathbf{Q} , there is a well defined minimal field H/\mathbf{Q} in E such that E/H is Galois.
- 46. Determine (with proof) the degree of $\mathbf{Q}(\sqrt{3+2\sqrt{2}})$ over \mathbf{Q} .
- 47. **Abelian Groups as Galois Groups.** Let p be prime, and let $\Phi_{p^m}(X)$ denote the p^m th cyclotomic polynomial, given explicitly by

$$\Phi_{p^m}(X) = \frac{X^{p^m} - 1}{X^{p^{m-1}} - 1} = 1 + X^{p^{m-1}} + \dots + X^{(p-1)p^{m-1}}.$$

- (a) Prove that $\Phi_{p^m}(X)$ is irreducible.
- (b) Let N be an integer, and let $q \neq p$ be a prime divisor of the integer $\Phi_{p^m}(N)$.
 - i. Prove that

$$N^{p^m} \equiv 1 \mod q.$$

ii. Prove that

$$N^{p^{m-1}} \not\equiv 1 \mod q.$$

Hint: assuming that $N^{p^{m-1}} \equiv 1 \mod q$, compute $\Phi_{p^m}(N) \mod q$.

- (c) Deduce that $q \equiv 1 \mod p^m$. (Hint: consider the order of the group \mathbf{F}_q^{\times} .)
- (d) Suppose that the set S of primes such that $q \equiv 1 \mod p^m$ is finite. Obtain a contradiction by considering a prime divisor q of $\Phi_{p^m}\left(p\prod_{q\in S}q\right)$.
- (e) By considering subfields of $\mathbf{Q}(\zeta_M)$ where M is a product of k primes in S, prove that $(\mathbf{Z}/p^m\mathbf{Z})^k$ occurs as a Galois group of a finite extension of \mathbf{Q} .
- (f) Prove that every finite abelian group A occurs as the Galois group of a finite extension of \mathbf{Q} .

- 48. **Resolvant cubics.** Let f(x) be an irreducible degree 4 polynomial over **Q** with splitting field F and roots θ_1 , θ_2 , θ_3 , and θ_4 . Let $\alpha_{(12)} = \theta_1\theta_2 + \theta_3\theta_4$, $\alpha_{(13)} = \theta_1\theta_3 + \theta_2\theta_4$, and $\alpha_{(14)} = \theta_1\theta_4 + \theta_2\theta_3$.
 - (a) Let $S = \{\alpha_{12}, \alpha_{13}, \alpha_{23}\}$. Prove that $G = Gal(L/\mathbb{Q})$ acts on this set.
 - (b) Let $H = \operatorname{Gal}(L/\mathbf{Q}(\alpha_{12}))$. Deduce that [G:H] = 1, 2, or 3.
 - (c) Deduce that the polynomial $g(x) = (X \alpha_{12})(X \alpha_{13})(X \alpha_{14})$ has coefficients in **Q**.
 - (d) If [G:H]=3, prove that $G=A_4$ or S_4 .
 - (e) If [G:H] = 1 or 2, prove that G has order dividing 8.
 - (f) Prove that $G \subset A_4$ if and only if $\delta = \prod_{i>j} (\theta_i \theta_j) \in \mathbf{Q}$.
 - (g) Prove that G has order dividing 8 if and only if g(x) has a rational root.
 - (h) Let E be the splitting field of g(x). Prove that $Gal(F/E) = K \cap G$, where K is the Klein 4-group of S_4 .
 - (i) Suppose that $f(x) = x^4 + ax^3 + bx^2 + cx + d$. Prove that

$$g(x) = x^3 - bx^2 + (ac - 4d)x + 4bd - c^2 - a^2d.$$

- (j) Prove that if $G \subset A_4$ has 2-power order and acts transitively on 4 points then G = K.
- (k) Using g(x), compute the Galois groups of the following polynomials:
 - i. $x^4 + x + 1$. Show $G \not\subset A_4$ and $|G| \nmid 8$ so $G = S_4$.
 - ii. $x^4 + 8x + 12$. Show $G \subset A_4$ and $|G| \nmid 8$ so $G = A_4$.
 - iii. $x^4 + x^2 + 2$. Show $G \not\subset A_4$ and |G||8. Then distinguish between $\mathbb{Z}/4\mathbb{Z}$ and D.
 - iv. $x^4 + x^3 + x^2 + x + 1$. Show $G \not\subset A_4$ and |G||8. Then distinguish between $\mathbb{Z}/4\mathbb{Z}$ and D.
 - v. $x^4 + 1$. Show $G \subset A_4$ and |G||8 so G = K.
- 49. **Imprimitive subgroups.** Let G act on a set A of n points. Recall that G is imprimitive (equivalently, not primitive) if and only if there does exists a decomposition

$$A = \coprod A_i$$

of A into distinct sets A_i such that:

- There is at least one i such that $|A_i| \geq 2$.
- If $g \in G$ and $a, a' \in A_i$, then g.a and g.a' both lie in A_j for some j.

Let G be a finite group which acts on a set A.

- (a) If G is not transitive, prove that G is not imprimitive by taking A_i to be the orbits of G.
- (b) Say that G is 2-transitive if, for any two pairs (a_1, a_2) and (a'_1, a'_2) of distinct elements of A, there exists a $g \in G$ such that $g(a_1) = a'_1$ and $g(a_2) = a'_2$. If G is 2-transitive, prove that G is primitive.
- (c) If G is transitive, but not primitive, prove that $|A_i| = |A_j|$ for all i and j.
- (d) Deduce that if G is transitive, and |A| is prime, then G is primitive.
- (e) Suppose that G is transitive, imprimitive, and acts faithfully on A.
 - i. Let B denote the set of sets $\{A_i\}$. Prove that G acts transitively on B.
 - ii. Show there exists integers a, b, and n such that |A| = n, |B| = b, $|A_i| = a$ for all i, and ab = n.

- iii. Let H denote the kernel of G acting on B. Prove that H is isomorphic to a subgroup of $(S_a)^b = S_a \times S_a \times \ldots S_a$.
- iv. Prove that G/H is isomorphic to a subgroup of S_b .
- v. Deduce that G has order dividing $b! \cdot (a)!^b$.
- vi. Let N be any group which acts faithfully and transitively on a points, and let Γ be any group which acts faithfully and transitively on b points. Prove that there is a group $N \wr \Gamma$ which acts faithfully, transitively, and imprimitively on a set A of order n = ab points, where G preserves a decomposition of A into sets A_i of order $|A_i| = a$, where the action of G onto the set B of sets $\{A_i\}$ factors through Γ , and where the kernel of this action is $H = N^b$.
- vii. Prove that G is subgroup of $S_a \wr S_b$.
- (f) Prove that the 2-Sylow of S_4 is $S_2 \wr S_2$.
- (g) Prove that the 3-Sylow of S_9 is $\mathbb{Z}/3\mathbb{Z} \wr \mathbb{Z}/3\mathbb{Z}$.
- (h) If N is the p-Sylow of S_{p^n} , prove that $N \wr \mathbf{Z}/p\mathbf{Z}$ is the p-Sylow of $S_{p^{n+1}}$.
- (i) Deduce that any p-group is a subgroup of $\mathbb{Z}/p\mathbb{Z} \wr \mathbb{Z}/p\mathbb{Z} \wr \mathbb{Z}/p\mathbb{Z} \dots \mathbb{Z}/p\mathbb{Z}$... $\mathbb{Z}/p\mathbb{Z}$...
- (j) Deduce that any p-group is solvable.
- (k) Find out what a Rubix cube is.

- (l) Let G be the group defined by the possible combinations of moves.
- (m) Prove that the action of G on the $9 \cdot 6 = 54$ has orbits of size 24, 24, and 6 orbits of size 1.
- (n) Prove that G admits a quotient N which is a subgroup of S_{24} by showing that some quotient acts faithfully on the corner squares.
- (o) Prove that the action of N on the corner squares is imprimitive, by taking A_i to be the triples of squares along each corner.
- (p) Deduce that N is a subgroup of $S_3 \wr S_8$, and hence |N| divides $3!^8 \cdot 8! = 67722117120$.
- (q) Prove that the stabilizer H in N of the cubes always preserves the orientation of the triple of colours around the corners, and hence that H is actually a subgroup of $(\mathbf{Z}/3\mathbf{Z})^8$.
- (r) Deduce that N is a subgroup of $(\mathbf{Z}/3\mathbf{Z}) \wr S_8$, and hence |N| divides $3^8 \cdot 8! = 264539520$. (Actually, N has index 2 in $(\mathbf{Z}/3\mathbf{Z}) \wr S_8$.)
- (s) Let M be the quotient on which G acts on the edge squares of the cube. Prove that M is a subgroup of S_{24} .
- (t) Prove that M acts imprimively on the set of edges, since it preserves the squares on each pair.
- (u) Deduce that M is a subgroup of $\mathbb{Z}/2\mathbb{Z} \wr S_{12}$.
- (v) Prove that G is a subgroup of $M \oplus N$.
- (w) Deduce that G is a subgroup of

$$(\mathbf{Z}/3\mathbf{Z}) \wr S_8 \oplus (\mathbf{Z}/2\mathbf{Z}) \wr S_{12},$$

and hence that G has order dividing

$$|G| = 3^8 \cdot 8! \cdot 2^{12} \cdot 12! = 519024039293878272000.$$

(In fact, it turns out that G has index 12 in this group.)

- 50. Let L/K be Galois with Galois group Γ . Let M/L be Galois with Galois group N. Show that the Galois closure N/K of M/K is Galois with Galois group a subgroup of $N \wr \Gamma$.
- 51. Let f(x) be an irreducible polynomial over \mathbf{Q} of degree b, and let g(x) be arbitrary of degree a. Prove that the Galois group of f(g(x)) is a subgroup of $S_a \wr S_b$.
- 52. Iterated Polynomials. Let f(x) be an irreducible quadratic polynomial. Let

$$f_n(x) = f(f(f(\cdots f(x))\cdots)))$$

where f is iterated n times.

Prove that the Galois group of $f_n(x)$ is a subgroup of the 2-Sylow P_{2^n} of S_{2^n} .

- (a) If $f(x) = x^2 2$, prove that $f_n(x)$ is irreducible.
- (b) If $f(x) = x^2 2$, prove that the Galois group of $f_n(x)$ is $\mathbb{Z}/2^n\mathbb{Z}$. (Hint: what is $f_n(t + t^{-1})$? Compare with question 10).
- (c) Find an explicit polynomial f(x) such that $f_n(x)$ has Galois group $P_{2^n} \subset S_{2^n}$ for all n.
- 53. Prove that $\sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{\frac{1}{9}} \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}$.
- 54. (14.5 (10) Prove that $\mathbf{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbf{Q} .
- 55. (See 14.6(2),(4),(5),(6),(7),(8),(9),(10)) Determine the Galois group of the following polynomials:
 - (a) $x^3 x^2 4$.
 - (b) $x^3 2x + 4$.
 - (c) $x^3 x + 1$.
 - (d) $x^3 + x^2 2x 1$.
 - (e) $x^4 25$.
 - (f) $x^4 + 4$.
 - (g) $x^4 + 3x^3 3x 2$.
 - (h) $x^4 + 8x + 12$.
 - (i) $x^4 + 4x 1$.
 - (i) $x^5 + x 1$.
- 56. Let K/\mathbf{Q} be a Galois extension.
 - (a) If $[K : \mathbf{Q}] = 2009$, prove that $Gal(K/\mathbf{Q})$ is abelian.
 - (b) If $[K : \mathbf{Q}] = 2010$, prove that K contains an extension E with $[E : \mathbf{Q}] = 2$.
 - (c) If $[K : \mathbf{Q}] = 2011$, prove that $Gal(K/\mathbf{Q})$ is abelian.
 - (d) If $[K : \mathbf{Q}] = 2012$, prove that K contains an extension E with $[E : \mathbf{Q}] = 503$.
 - (e) If $[K : \mathbf{Q}] = 2013$, prove that K contains an extension E with $[E : \mathbf{Q}] = 3$.

- (f) If $[K : \mathbf{Q}] = 2014$, prove that K contains an extension E with $[E : \mathbf{Q}] = 19$.
- (g) If $[K: \mathbf{Q}] = 2015$, prove that K contains an extension E with $[E: \mathbf{Q}] = 13$.
- (h) If $[K: \mathbf{Q}] = 2016$, prove that K contains an extension E with $[E: \mathbf{Q}] = 63$.
- 57. Determine (with proof) the degree of the splitting field of $x^{10} 25$.
- 58. (14.4 (5)) Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois group is a p-group (i.e., the degree [K : F] is a power of p). Such an extension is called a p-extension (note that p-extensions are Galois by definition).
 - (a) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension of F.
 - (b) Give an example to show that (a) need not hold if [K : F] is a power of p but K/F is not Galois.
- 59. Prove that the Galois group of the splitting field of $x^4 + ax^2 + b$ is a subgroup of D_8 .
- 60. (14.6 (3)) Let $q = p^n$. Prove that for any $a, b \in \mathbf{F}_q$, if $x^3 + ax + b$ is irreducible, then $-4a^3 27b^2$ is a square in \mathbf{F}_q .
- 61. (14.6 (48)).
- 62. Consider the polynomial $p(x) = x^5 x^4 + 2x^2 2x + 2$.
 - (a) Prove that p(x) is irreducible mod 3, and hence irreducible, and deduce that the Galois group G of its splitting field is a transitive subgroup of S_5 .
 - (b) Prove that p(x) has exactly one real root, and hence G contains an element of order 2.
 - (c) Prove that the discriminant of p(x) is $2^6 \cdot 17^2$, and conclude that the Galois group G of the splitting field of p(x) is a subgroup of A_5 .
 - (d) Show that the transitive subgroups of A_5 are A_5 , $\mathbb{Z}/5\mathbb{Z}$, and D_5 .
 - (e) Prove that

$$p(x) \equiv (x-3)(x-2)(x^3+4x^2+3x+4) \mod 11.$$

- (f) Deduce that $G = A_5$.
- 63. Draw the lattice of subfields of the splitting fields of the following polynomials.
 - (a) $x^3 2$.
 - (b) $x^4 7x^2 5$.
- 64. Show that the polynomial $x^5 4x + 2$ is not solvable in terms of radicals.
- 65. Determine whether $x^3 + 4x + 1$ is irreducible in $\mathbf{F}_5[x]$. What is its splitting field?
- 66. How many elements in \mathbf{F}_8 satisfy $a^5 + a + 1 = 0$?
- 67. Find an irreducible polynomial of degree 3 over \mathbf{F}_5 .
- 68. Let E/\mathbf{Q} be a Galois extension.
 - (a) Show that E cannot be both the splitting field of an irreducible polynomial of degree 5 and of degree 7.

- (b) Suppose E is the splitting field of an polynomial of degree p, and the splitting field of a polynomial of degree p + 1, where p is prime.
 - i. Prove that G is not solvable.
 - ii. Prove that G is not A_n or S_n unless n = 5.
 - iii. Deduce that if p = 7, then $G = GL_3(\mathbf{F}_2)$.
- 69. Show that if the splitting field of f(x) is Galois with Galois group A_n , then the discriminant $\Delta^2 = \prod_{i>j} (\alpha_i \alpha_j)^2$ of f(x) is positive.
- 70. Prove that if K/\mathbf{Q} is a finite extension, then $K = \mathbf{Q}(\alpha)$ for some $\alpha \in K$.
- 71. Let K/\mathbb{Q} be a Galois extension with Galois group G. Prove there exists a unique maximal subfield $F \subset K$ such that:
 - (a) F/\mathbf{Q} is Galois with abelian Galois group.
 - (b) F/\mathbf{Q} is Galois with solvable Galois group.
 - (c) F/\mathbf{Q} is Galois with $[F:\mathbf{Q}]$ odd.
 - (d) F/\mathbf{Q} is Galois with $[F:\mathbf{Q}]$ co-prime to p for any fixed prime p.
- 72. Let K/\mathbf{Q} be a finite extension. Let $\alpha, \beta \in K$, and let $E = \mathbf{Q}(\alpha)$ and $F = \mathbf{Q}(\beta)$.
 - (a) Let $H = \mathbf{Q}(\alpha + \beta)$. Prove that $[H : \mathbf{Q}] \leq [E : \mathbf{Q}][F : \mathbf{Q}]$.
 - (b) If $([E : \mathbf{Q}], [F : \mathbf{Q}]) = 1$, show that $[H : \mathbf{Q}] = [E : \mathbf{Q}][F : \mathbf{Q}]$.
- 73. Find a basis for the vector space $K = \mathbf{Q}(\sqrt[3]{2})$ over \mathbf{Q} . With respect to this basis, write down the matrix associated to the \mathbf{Q} -linear map $K \to K$ given by multiplication by $a + b\sqrt[3]{2}$. What is the trace of this matrix?
- 74. Let p be prime, and let ζ be a primitive pth root of unity. Prove that

$$\prod_{i=1}^{p-1} (1 - \zeta^i) = p.$$

- 75. Suppose the polynomial f(x) of degree 3 in $\mathbf{Q}[x]$ is irreducible. Prove that f(x) considered as a polynomial over $\mathbf{Q}(\sqrt{2})[x]$ is still irreducible.
- 76. Let K be field of characteristic zero and suppose that $\zeta_p \in K$. Let L/K be an extension with $\operatorname{Gal}(L/K) = \langle \sigma \rangle = \mathbf{Z}/p\mathbf{Z}$.
 - (a) Think of L as a p-dimensional vector space over K, and let $\sigma: L \to L$ be the corresponding K-linear map induced by σ . Let M denote the corresponding matrix for some choice of basis. Prove that $M^p = I$.
 - (b) Prove that the characteristic polynomial of M^p is exactly $X^p 1$, and deduce that the eigenvalues of M are precisely ζ^k for $k = 0, \dots, p-1$.
 - (c) Deduce that L/K has a basis $x_0, x_1, \ldots, x_{p-1}$ such that

$$\sigma x_i = \zeta^i x_i$$

for all i.

- (d) Compute this basis explcitly when $K = \mathbf{Q}(\zeta_4) = \mathbf{Q}(i)$ and $L/K = \mathbf{Q}(\zeta_5, i)$ with p = 5.
- 77. Let L/K be a Galois extension, and suppose that any intermediate field L/F/K is either L or K. Prove that [L:K] is prime.
- 78. Let L/K be a finite extension, and suppose that any intermediate field L/F/K is either L or K. Show by example that [L:K] does not have to be prime.
- 79. Find (with proof) all the subfields of $\mathbf{Q}(\sqrt[4]{2}, \sqrt{-1})$.
- 80. Prove that $\mathbf{Q}(\sqrt[6]{-3})$ is the splitting field of $x^6 + 3$.
- 81. Determine whether the following fields are Galois over **Q**:
 - (a) $\mathbf{Q}(\sqrt{1+\sqrt{2}})$
 - (b) $\mathbf{Q}(\sqrt{2} + \sqrt{3})$
- 82. Prove that if L/K has Galois group $\operatorname{Gal}(L/K) \simeq A_4$, then L does not contain any quadratic extension F/K.
- 83. Suppose that f(x) is an irreducible polynomial of degree 3 over a perfect field K.
 - (a) Let L/K be the splitting field of f(x). Prove that G := Gal(L/K) is either $\mathbb{Z}/3\mathbb{Z}$ or S_3 .
 - (b) Let the roots of f(x) be α , β , and γ . Prove there is a $\sigma \in G$ sending α to β , β to γ , and γ to α .
 - (c) Let $\Delta = (\alpha \beta)(\beta \gamma)(\gamma \delta)$. Prove that $\sigma \Delta = \Delta$. Deduce that Δ lies in the fixed field F of $\langle \sigma \rangle$.
 - (d) If $G = \mathbf{Z}/3\mathbf{Z}$, prove that $\Delta \in \mathbf{Q}$.
 - (e) If $G = S_3$, prove that there exists a $\tau \in G$ such that $\tau \Delta = -\Delta$. Deduce that $\Delta \notin \mathbf{Q}$, but $\Delta^2 \in \mathbf{Q}$.
 - (f) Deduce that $G = S_3$ if and only if the element $\Delta \in \mathbf{Q}$ is not a perfect square.
 - (g) If $f(x) = x^3 + px + q$, prove that

$$\alpha\beta\gamma = -q,$$
 $\alpha\beta + \alpha\gamma + \beta\gamma = p,$ $\alpha + \beta + \gamma = 0.$

(h) Deduce that

$$\Delta^2 = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \delta)^2 = -4p^3 - 27q^2.$$

- (i) Compute the Galois groups G of the following cubics, as well as their quadratic subfields when $G = S_3$.
 - i. $x^3 2$.
 - ii. $x^3 x 1$.
 - iii. $x^3 21x 7$
- 84. Generalize the last problem. Let f(x) be irreducible of degree n with coefficients in K, and let $G = \operatorname{Gal}(L/K)$ be thought of as a subgroup of S_n via the permutation action of the roots. If the roots of f(x) in L are α_i , prove that if $\Delta = \prod_{i>j} (\alpha_i \alpha_j)$, then $\Delta^2 \in K$, and $\Delta \in K$ if and only if $\operatorname{Gal}(L/K) \subset A_n$.
- 85. Let α be an algebraic number, and suppose that $[\mathbf{Q}(\alpha):\mathbf{Q}]$ is odd. Prove that $[\mathbf{Q}(\alpha^2),\mathbf{Q}]$ is odd.

- 86. Let L/K be a finite Galois extension. Let $\sigma \in \operatorname{Gal}(L/K)$, and suppose that $K \subset F \subset L$. Prove that if $\sigma(F)$ is contained in F, then $\sigma(F)$ equals F.
- 87. Let $f(x) = x^4 + ax^2 + b \in K[x]$. Let L be the splitting field of K.
 - (a) Prove that [L:K] has order dividing 8. [Hint: show that f(x) partially factors over the splitting field of $x^2 + ax + b$]
 - (b) Prove that Gal(L/K) is a subgroup of D_8 .
- 88. Let p and q be distinct primes. Let $K = \mathbf{Q}(\sqrt{p}, \sqrt{q})$.
 - (a) Prove that $Gal(K/\mathbf{Q}) \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.
 - (b) Find all subfields of K.
 - (c) Show there is an element $\alpha \in K$ such that $K = \mathbf{Q}(\alpha)$.
- 89. Let $S = \{p_1, p_2, \dots, p_n\}$ be n distinct primes.
 - (a) Let Σ denote the set consisting of non-trivial products of distinct elements of S. Prove that $|\Sigma| = 2^n 1$.
 - (b) If D_1 and D_2 denote elements of Σ , prove that $\mathbf{Q}(\sqrt{D_1}) \simeq \mathbf{Q}(\sqrt{D_2})$ if and only if $D_1 = D_2$.
 - (c) Let $K = \mathbf{Q}(\sqrt{p_1}, \dots, \sqrt{p_n})$. Prove that K is the splitting field of

$$(X^2 - p_1)(X^2 - p_2) \cdots (X^2 - p_n).$$

- (d) Prove that $Gal(K/\mathbf{Q})$ is a subgroup of $(\mathbf{Z}/2\mathbf{Z})^n$.
- (e) Prove that K has at least $2^n 1$ subfields of degree 2.
- (f) Prove that $Gal(K/\mathbf{Q}) = (\mathbf{Z}/2\mathbf{Z})^n$, and deduce that $[K : \mathbf{Q}] = 2^n$.
- 90. Let L/\mathbf{Q} be Galois with $\operatorname{Gal}(L/\mathbf{Q}) = Q = \{\pm i, \pm j, \pm k, \pm 1\}$, the quaternion group of order 8. Prove that any quadratic subfield of $K \subset L$ is a real quadratic field; that is, admits a ring homomorphism injection $K \to \mathbf{R}$.
- 91. Find an irreducible polynomial with splitting field \mathbf{F}_{32} .
- 92. Let L/K be a finite extension of fields, and let R be a ring that contains K and is contained inside L, so $K \subset R \subset L$. Prove that R is a field.
- 93. If L/K is an extension of degree 2, prove that L is the splitting field of some polynomial in K[x].
- 94. Suppose that \mathbf{F}_{pf} be the splitting field of $x^{17} 1$ over \mathbf{F}_p . Prove that:
 - (a) If p = 2, then f = 8.
 - (b) If p = 3, then f = 16.
 - (c) If p = 17, then f = 1.
 - (d) For all p, f divides 16.

[Hint: what is the order of \mathbf{F}_a^{\times} ?]

- 95. Prove that the roots of $x^4 + 10x^2 + 1$ are $\pm \sqrt{2} \pm \sqrt{3}$.
 - (a) Deduce that $x^4 + 10x^2 + 1$ is irreducible over **Q**.

- (b) Prove that 2 and 3 are both squares in \mathbf{F}_{p^2} for any prime p, and deduce that $x^4 + 10x^2 + 1$ is never irreducible over \mathbf{F}_p .
- 96. Find the splitting fields of the following polynomials, and draw the lattice of subfields.
 - (a) $x^4 + 1$.
 - (b) $x^4 + 2$.
 - (c) $x^3 3$.
 - (d) $x^4 + 4$.
 - (e) $x^5 5$.
 - (f) $x^{11} 1$.
- 97. (Gauss Sums) Let p > 2 be prime, and let $G = \operatorname{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q}) = (\mathbf{Z}/p\mathbf{Z})^{\times}$, where ζ is a primitive pth root of unity, and where $a \in G$ sends ζ to ζ^a .
 - (a) Say that $a \not\equiv 0 \mod p$ is a quadratic residue if it is a square; that is, $a \equiv x^2 \mod p$. Prove that G has a unique subgroup H of consisting of quadratic residues.
 - (b) For $a \not\equiv 0 \mod p$, define the quadratic residue symbol as follows:

Prove that the map $G \to \{\pm 1\} = \mathbf{Z}/2\mathbf{Z}$ sending a to (a/p) is a homomorphism with kernel H.

- (c) Prove that $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p$.
- (d) Let $\chi := \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a = \sum_{a \in G} \left(\frac{a}{p}\right) \zeta^a \in \mathbf{Q}(\zeta)$. Prove that, for $g \in G$, $g\chi = \left(\frac{a}{p}\right) \chi$.
- (e) Deduce that χ^2 is fixed by G and hence $\chi^2 \in \mathbf{Q}$. Deduce that either $\chi = 0$, or χ generates the unique quadratic subfield $K := \mathbf{Q}(\zeta)^H \subset \mathbf{Q}(\zeta)$.
- (f) Prove that if one chooses any embedding of $\mathbf{Q}(\zeta)$ into \mathbf{C} , then complex conjugation acts on $\mathbf{Q}(\zeta)$ by $-1 \in G$, that is, $\zeta \mapsto \zeta^{-1}$.
- (g) Prove that if one chooses any embedding of $\mathbf{Q}(\zeta)$ into \mathbf{C} , then the absolute value squared $|x|^2$ of the image of $x \in \mathbf{Q}(\zeta) \subset \mathbf{C}$ is equal to $x \cdot cx$. If $p \geq 5$, show that the absolute value of $|1+\zeta|$ depends on the choice of embedding $\mathbf{Q}(\zeta) \to \mathbf{C}$. In contrast, show that the absolute value of $|\chi^2|$ does not depend on the embedding. (use (97e))
- (h) Prove that $|\chi^2| = \chi \cdot c\chi = \left(\sum_{a \in G} \left(\frac{a}{p}\right) \zeta^a\right) \left(\sum_{b \in G} \left(\frac{b}{p}\right) \zeta^{-b}\right) = \sum_{a,b \in G} \left(\frac{ab}{p}\right) \zeta^{a-b}$.
- (i) By replacing a by ab in the sum above, show that

$$|\chi^2| = \sum_{a,b \in G} \left(\frac{a}{p}\right) \zeta^{(a-1)b}.$$

- (j) Prove that $\sum_{b \in G} \zeta^{(a-1)b}$ equals p-1 if $a=1 \in G$ and equals -1 for all other $a \in G$.
- (k) Deduce that $|\chi^2| = \sum_{a,b \in G} \left(\frac{ab}{p}\right) \zeta^{a-b} = p + \sum_{a \in G} \left(\frac{a}{p}\right) (-1) = p$.

- (1) Show that complex conjugation c = -1 lies in H if and only if $p \equiv 1 \mod 4$. (use (97c))
- (m) Show that $c\chi = \chi$ if $c \in H$ and $c\chi = -\chi$ if $c \notin H$. Deduce that if $\mathbf{Q}(\zeta) \subset \mathbf{C}$, then χ is either real or purely imaginary depending on whether $c \in H$. (use (97d))
- (n) Let $p^* = p$ if $p \equiv 1 \mod 4$ and -p if $p \equiv -1 \mod 4$. Prove that $\chi^2 = p^*$, and deduce that the quadratic subfield K of $\mathbf{Q}(\zeta)$ is equal to $\mathbf{Q}(\sqrt{p^*})$.
- (o) Now suppose that $\mathbf{Q}(\zeta) \to \mathbf{C}$ sends ζ to the very specific choice $e^{2\pi i/p} \in \mathbf{C}$. Let $\sqrt{p^*}$ denote the complex number which is either positive if $p^* > 0$ or has positive imaginary part if $p^* < 0$. We know that $\chi^2 = p^*$ so $\chi = \pm \sqrt{p^*}$. Determine the correct sign in this formula for p = 3, 5, 7, and 11.
- (p) (*) Determine the sign in part (970) for all p.
- (a) Let L be the splitting field of the polynomial $x^4 x 1$ over \mathbf{Q} , and denote the roots by α_1 , α_2 , α_3 , and α_4 . You may assume that $G = \operatorname{Gal}(L/\mathbf{Q}) = S_4$.
 - i. Determine the number n of subfields E of L. (Thus two fields $E \subset L$ and $F \subset L$ count as one if and only if E = F inside L.)
 - ii. Determine the number m of subfields E of L up to isomorphism. (Thus two fields $E \subset L$ and $F \subset L$ count as one if and only if there is an isomorphism $E \simeq F$.)
 - iii. For each of the *n* subfields *E* in part (97(a)i), write down a primitive element $\theta \in L$; that is, an element $\theta \in L$ such that $E = \mathbf{Q}(\theta) \subset L$.
 - iv. For each of the n subfields E and elements θ of part (97(a)iii), write down the irreducible polynomial of θ in $\mathbf{Q}[x]$.
- 98. **Kummer Extensions.** Let K be a field of characteristic zero containing the splitting field of $x^n 1$. Let L/K be Galois with $Gal(L/K) = \mathbf{Z}/n\mathbf{Z}$.
 - (a) Let ζ be a primitive nth root of unity in K, and let A and B denote the following matrices:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \zeta & \zeta^2 & \zeta^3 & \zeta^4 & \dots & \zeta^{n-1} \\ 1 & \zeta^2 & \zeta^4 & \zeta^6 & \zeta^8 & \dots & \zeta^{2(n-1)} \\ & \ddots & & & & \\ 1 & \zeta^{n-1} & \zeta^{2(n-1)} & \zeta^{3(n-1)} & \zeta^{4(n-1)} & \dots & \zeta^{(n-1)^2} \end{pmatrix} = (\zeta^{ij})_{i,i=0}^{n-1},$$

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \zeta^{-1} & \zeta^{-2} & \zeta^{-3} & \zeta^{-4} & \dots & \zeta^{-(n-1)} \\ 1 & \zeta^{-2} & \zeta^{-4} & \zeta^{-6} & \zeta^{-8} & \dots & \zeta^{-2(n-1)} \\ & \ddots & & & & \\ 1 & \zeta^{-(n-1)} & \zeta^{-2(n-1)} & \zeta^{-3(n-1)} & \zeta^{-4(n-1)} & \dots & \zeta^{-(n-1)^2} \end{pmatrix} = \left(\zeta^{-ij}\right)_{i,i=0}^{n-1}.$$

Prove that A.B = n.I.

(b) Suppose that $\theta \in L$. Show that

$$x_k = \sum_{i=0}^{n-1} \zeta^{-ik} \sigma^k \theta$$

satisfies $\sigma x_k = \zeta^k x_k$.

(c) Let f(x) be a degree n polynomial over K whose splitting field is L. Let θ be a root of f(x). Prove that

$$\theta = \frac{1}{n} \sum_{i=0}^{n-1} x_i,$$

where x_i are defined as above.

- (d) Prove that $x_i^n \in K$.
- (e) Let $K = \mathbf{Q}(\zeta_5)$, and let L be the subfield of $\mathbf{Q}(\zeta_5, \zeta_{11})$ of degree 5 over K, and let $\theta = \zeta_{11} + \zeta_{11}^{-1}$. Prove that θ is a root of

$$x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1 = 0.$$

(f) Suppose that $\sigma\zeta_{11}=\zeta_{11}^2$, so that $\sigma x=x^2-2$. Prove that

$$x_0^5 = -1$$

$$x_1^5 = 385y^3 + 110y^2 + 220y - 66$$

$$x_2^5 = -110y^3 + 110y^2 + 275y - 176$$

$$x_3^5 = -165y^3 - 385y^2 - 275y - 451$$

$$x_4^5 = -110y^3 + 165y^2 - 220y - 286$$

(g) Suppose that $\zeta_5 = e^{2\pi i/5}$. Show that

$$y = \frac{\sqrt{5} - 1}{4} + \sqrt{-\frac{5 + \sqrt{5}}{8}}.$$

Deduce that

$$\begin{split} x_1^5 &= -\left(\frac{11(89+25\sqrt{5})}{4}\right) + \frac{55(13-5\sqrt{5})}{2}\sqrt{-\frac{5+\sqrt{5}}{8}} \sim -398.48 + 47.5915i, \\ x_2^5 &= -\left(\frac{11(89-25\sqrt{5})}{4}\right) + 55(3+2\sqrt{5})\sqrt{-\frac{5+\sqrt{5}}{8}} \sim -91.0203 + 390.853i, \\ x_3^5 &= -\left(\frac{11(89-25\sqrt{5})}{4}\right) - 55(3+2\sqrt{5})\sqrt{-\frac{5+\sqrt{5}}{8}} \sim -91.0203 - 390.853i, \\ x_4^5 &= -\left(\frac{11(89+25\sqrt{5})}{4}\right) - \frac{55(13-5\sqrt{5})}{2}\sqrt{-\frac{5+\sqrt{5}}{8}} \sim -398.48 - 47.5915i, \end{split}$$

(h) Deduce that $2\cos(2\pi/11)$ is equal to

$$\begin{split} &\frac{1}{5}\left(-1+\sqrt[5]{-\left(\frac{11(89+25\sqrt{5})}{4}\right)+\frac{55(13-5\sqrt{5})}{2}\sqrt{-\frac{5+\sqrt{5}}{8}}}+\sqrt[5]{-\left(\frac{11(89-25\sqrt{5})}{4}\right)+55(3+2\sqrt{5})\sqrt{-\frac{5+\sqrt{5}}{8}}}\right.\\ &+\sqrt[5]{-\left(\frac{11(89-25\sqrt{5})}{4}\right)-55(3+2\sqrt{5})\sqrt{-\frac{5+\sqrt{5}}{8}}}+\sqrt[5]{-\left(\frac{11(89+25\sqrt{5})}{4}\right)-\frac{55(13-5\sqrt{5})}{2}\sqrt{-\frac{5+\sqrt{5}}{8}}}\right)\\ &\sim\frac{1}{5}\left(-1+(2.63611-2.0127i)+(2.07016-2.59122i)+(2.07016+2.59122i)+(2.63611+2.0127i)\right) \end{split}$$

where the last line indicates which 5th root in C one is considering.

- 99. Let $f(x) \in \mathbf{Q}[x]$ be an irreducible polynomial of degree d. Suppose that $K = \mathbf{Q}[x]/f(x)$. Prove if K/\mathbf{Q} is a splitting field, then the roots of f(x) are either all real or none of them are real.
- 100. Prove that If K/\mathbf{Q} and L/\mathbf{Q} have co-prime degrees, then $K \cap L = \mathbf{Q}$.
- 101. Prove that if L/K is a finite extension, and M/L is a finite extension, then there is an equality [M:K] = [M:L][L:K].
- 102. Let f(x) be a separable polynomial over $\mathbf{F}_p[x]$ of degree n. Suppose that f(x) factors as

$$f(x) = \prod f_i(x),$$

where $f_i(x)$ are irreducible of degree r_i for $\sum r_i = n$. Let K/\mathbf{F}_p be the splitting field of f(x), and let $G \subset S_n$ where $G = \operatorname{Gal}(K/\mathbf{F}_p)$ acts on the roots. Prove that G is generated by an element $\sigma \in S_n$ whose cycle decomposition is a product of disjoint cycles of length r_i .

- 103. Prove that there does not exist a separable polynomial f(x) of degree 4 over \mathbf{F}_2 whose corresponding Galois group $G \subset S_4$ is generated by $\sigma = (12)(34)$.
- 104. Let K/\mathbf{Q} be an extension of degree n.
 - (a) Prove that if n = p is prime, then K/\mathbb{Q} has no intermediate subfields except \mathbb{Q} and K.
 - (b) Let L/\mathbf{Q} be the Galois closure of K, let $G = \operatorname{Gal}(L/\mathbf{Q})$, and $H = \operatorname{Gal}(L/K)$. Prove that the number of intermediate subfields between K and \mathbf{Q} is the number of subgroups Γ of G containing H.
 - (c) Prove that if $G = S_n$ with $n = [K : \mathbf{Q}]$ then there are no intermediate subfields.
 - (d) Suppose that n = 6. Decide whether the following situations are possible:
 - i. There exists a unique intermediate proper subfield $\mathbf{Q} \subset E \subset K$, and $[E:\mathbf{Q}]=2$.
 - ii. There exists a unique intermediate proper subfield $\mathbf{Q} \subset E \subset K$, and $[E : \mathbf{Q}] = 3$.