Putnam Questions, Week 1

1. Prove that \(\frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \ldots + \frac{1}{\sqrt{99} + \sqrt{100}} = 9. \)

2. Prove that there exists an integer \(n \) such that the first four digits of \(2^n \) are 2, 0, 0, 9.

3. Given a set of \(n + 1 \) integers between 1 and \(2n \), prove that one number must divide another. Prove that this is not necessarily true for \(n \) integers between 1 and \(2n \).

4. Let \(f(x) \) be a polynomial, and suppose that \(f(x) + f'(x) > 0 \) for all \(x \). Prove that \(f(x) > 0 \) for all \(x \).

5. For which real numbers \(c \) is \((e^x + e^{-x})/2 \leq e^{cx^2} \) for all real \(x \)?

6. Evaluate the infinite product \(\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1} \).