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To Laurent Clozel, in admiration.

ABSTRACT. We prove the existence of a cuspidal automorphic representation 7
for GL79 /Q of level one and weight zero. We construct 7 using symmetric
power functoriality and a change of weight theorem, using Galois deformation
theory. As a corollary, we construct the first known cuspidal cohomology
classes in H*(GLy, (Z), C) for any n > 1.

1. INTRODUCTION

It is a well-known fact that there do not exist any cuspidal modular forms of
level N = 1 and weight k& = 2. From the Eichler—-Shimura isomorphism, this is
equivalent to the vanishing of the cuspidal cohomology groups

Héusp(GLQ(Z)7 C) =0
for all i (particularly < = 1). It is natural to wonder what happens in higher rank.

Problem A. Does there exist an n > 1 such that H, (GL,(Z),C) # 0 for
some 7

Higher rank analogues of the Eichler—Shimura isomorphism [Bor81, Cor. 5.5]
show that Problem [A] is equivalent to the existence of cuspidal automorphic rep-
resentations 7 for GL,, /Q which have level one and weight zero. Here level one
means that 7, is unramified for all primes p and weight zero means that m, has
the same infinitesimal character as the trivial representation.

The work of Fermigier and subsequently of Miller ([Fer96, Cor. 1] for n < 23,
[Mil02, Thm. 1.6] for n < 27) showed that the groups H,,(GL,(Z), C) vanish for
all 1 < n < 27; their methods are analytic and are related to the Stark—Odlyzko
positivity technique [OdI90] for lower bounds on discriminants of number fields.

Problem [A] has subsequently been raised explicitly by a number of people, in-
cluding [Clo16, §2.5], [Khal0], and [CRI5] §1.2], where it is referred to as a “well-
known” problem. One motivation for this question, emphasized by Khare, is that
the vanishing of the H/  (GL,(Z),C) for a given n could provide the base case
for an inductive proof of the analogue of Serre’s conjecture in dimension n. It was
unclear to many people (including some of the authors of this paper) whether it was
reasonable to hope for this vanishing for all n, although in recent years the work
of Chenevier and Taibi on self-dual automorphic representations of level 1 (see e.g.
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the introduction to [CT20]) had made this seem unlikely. Another reason to expect
an affirmative answer to Problem [A] is by comparison to the aforementioned dis-
criminant bounds of Odlzyko, which for a number field K/Q give positive constant
lower bounds for the root discriminant dx = |Ag |V Q) as the degree of K tends
to infinity. One may ask whether there might exist a lower bound which tended
to infinity in [K : Q]. The answer to this question is no by the Golod—Shafarevich
construction; the existence of class field towers gives an infinite sequence of fields
of increasing degree such that dx is constant.
Our main theorem resolves Problem [Alin the affirmative:

Theorem B (Theorem Corollary . There exist cuspidal automorphic rep-
resentations for GL,, /Q of level one and weight zero for n =79, n = 105, and n =
106. In particular, HZ,,(GL,(Z),C) # 0 for these n.

Our argument works for other values of n (presumably infinitely many, although
we do not know how to prove this; see Remarks and . In light of Theorem
there is the obvious variation of Problem [A}

Problem C. What is the smallest n > 1 such that H!, (GL,(Z),C) # 0 for

some 17

We know from [Mil02] and Theorem [B| that the answer satisfies 27 < n < 79.
The work of Chenevier and Taibi [CT20] suggests that the real answer is much
closer to the lower bound than the upper bound.

While the formulation of Problem [A]l makes no reference to motives or Galois
representations, according to standard conjectures in the Langlands program it is
equivalent to the existence of irreducible rank n pure motives (with coefficients)
over Q with everywhere good reduction and Hodge numbers 0,1,...,n — 1, or to
the existence of irreducible Galois representations p : Gq — GL,(Q,) unramified
away from p and crystalline with Hodge—Tate weights 0,1,...,n — 1 at p. In fact,
we will proceed by producing such Galois representations.

Our approach to proving Theorem [B| is ultimately based on the conjecture of
Serre [Ser87] predicting the existence of congruences between modular forms of
different weights. If f is a cuspidal eigenform of level 1 and weight k£ and the mod
p Galois representation p; , : Gq — GLy(F)) is irreducible, then Serre predicts
that there exists a modular form g of weight 2 and level 1 with p, , ~ o, if and
only if ﬁf’Z)‘GQP admits a crystalline lift with Hodge—Tate weights 0 and 1. Of
course this cannot actually occur as no such g exists! The natural generalization
of Serre’s conjecture for larger n predicts that if 7 is a regular algebraic essentially
self dual cuspidal automorphic representation for GL,, /Q of level 1 and arbitrary
weight, and the mod p Galois representation p, , : Gq — GL,(F,) has “large”
image, then there exists a 7’ of level 1 and weight 0 with Pt p = Prp if and only
if ﬁﬂ,p|GQP admits a crystalline lift with Hodge-Tate weights 0, 1,...,n — 1. In
many instances, these “change of weight” congruences may in fact be produced
using automorphy lifting theorems and the Khare-Wintenberger method, as in
[Gee07, [GGI12, BLGGT14].

It remains to explain how we find the m to which the above strategy can be
applied. For this, we need a supply of 7 for which ﬁTﬁp‘GQP may be readily under-

stood. Our idea is to take 7 to be Sym™ ' f (up to twist) for f a modular form
of level 1; this symmetric power lift is now available thanks to the recent work of
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Newton—Thorne (see [NT2I, Thm. A] for the version we use). If f is a cuspidal
eigenform of level 1 and weight k < p, then typically f will be ordinary at p and the
Galois representation ﬁf’p\ 1, Will be a nonsplit extension of =% by 1, where £ de-
notes the mod p cyclotomic character. In this case no twist of Sym™ ' 5 f,p\gqp will
have a crystalline lift of Hodge—Tate weights 0,...,n—1, at least for n < p. On the
other hand in the less typical situation that p f|GQP is semisimple (or equivalently
tamely ramified) we are sometimes able to succeed. Here there are two possibilities,
either f is still ordinary at p but the extension splits and ﬁﬁp\g% is a sum of two
characters, or f is non-ordinary at p and ﬁf’p\g% is irreducible.

As an illustration, if f is ordinary at p, Py ,|cq, splits, and (k —1,p—1) =1,
then as Z has order p — 1, we find that

p—2
Symp pfp‘I _Symp 2 1@71 k @71(1 k) _ @gz

and hence Sym? 25 f.plGq, has acrystalline lift of Hodge-Tate weights 0,1, ..., p—2
which on inertia is simply a sum of powers of the cyclotomic character. This leads
to the case n = 106 of theorem, taking f to be the cusp form of level 1 and weight 26
and p = 107, while the case n = 105 comes from a similar consideration of Sym*%* f.
Our “change of weight” theorem is proved by extending the techniques introduced
in [Gee07] and developed further by Gee and Geraghty in [GGI2], combining the
Khare-Wintenberger method with automorphy lifting theorems for Hida families
on unitary groups due to Geraghty [Gerl9] (and refined by Thorne [Thol2]). The
case n = 79 comes from considering Sym™ f for a modular form f which is non-
ordinary at p = 79. Here the change of weight theorem is more involved, and closer
to the arguments of [BLGGT14], using the Harris tensor product trick.

1.1. Acknowledgements. We have been aware of Problem [A] for some time, but
it was most recently brought to our attention at a lecture [Che23|] by Gaéten Ch-
enevier at the conference Arithmétique des formes automorphes at Orsay in Sep-
tember, 2023, in honour of Laurent Clozel’s 70th birthday. In light of this, together
with the obvious connections between the methods of this paper and Clozel’s work
(Galois representations associated to self-dual automorphic representations, mod-
ularity lifting theorems for self-dual Galois representations, and symmetric power
functoriality for modular forms, to name but three), it is a pleasure to dedicate
this paper to him. We would also like to thank James Newton, Will Sawin, Olivier
Taibi and Jack Thorne for helpful comments on earlier versions of this paper.

2. THE ORDINARY CASE

~

We fix once and for all for each prime p an isomorphism 2 = 7, : C = Qp,
and we will accordingly sometimes implicitly regard automorphic representations
as being defined over Qp, rather than C. In particularly we will freely refer to
“the” p-adic Galois representation associated to a (regular algebraic) automorphic
representation. We write py : Gq — GL2(Q,) and p; : Gq — GLy(F,) for the
cohomologically normalized representations associated to an eigenform f. Let ¢
denote the p-adic cyclotomic character and € its mod-p reduction.

Theorem 2.1. Let f be an eigenform of level SLo(Z) and weight k > 2, and
let p > 5 be a prime such that:
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1) ps(Gq) 2 SLa(Fy).

2) (p—1L,k—-1)=1.

3) f is ordinary at p.

(4) Pflaq, is semisimple.

Then, for bothn = p—1 and n = p—2, there exists a self-dual cuspidal automorphic
representation w for GL, /Q of level one and weight zero whose mod p Galois
representation p, : Gq — GL,(F,) is isomorphic to

(n—1)(k—2)
2

Sym" (p; T ) =2 ® Sym™ 1 7.

Proof. Let n =p—1 or p — 2, and write G,, = GSp,, if n = p — 1 (equivalently, if
n is even), and G,, = GO,, if n = p — 2 (equivalently, if n is odd). Let F/F, be a
finite extension such that p;(Gq) C GL2(F), and write

k-2 (=1)(k=2)
2

pi=Sym" '(p;@E 7 ) =¢ @ Sym™ ™' By : Gq = GL, (F).

Since py is symplectic with multiplier e!=F the twist Pr® T is symplectic with

multiplier 271, and so we can and do regard 7 as a representation Gq — G (F)

with multiplier #17". In particular, we have an isomorphism p ~ 5! =",

By the hypotheses that f is ordinary at p and plGQp is semisimple, we can write

_ ~ T ol g
Pf|GQp:1/)@1/1 51 4§

for some unramified character 1), so that
n—1 .
Plag, = @@"‘1‘2’5(%1)(#2)/27(kfl)i'
P
j=0

Since (p — 1,k — 1) = 1, either n = p —1 or n = p — 2, and € has order (p — 1), it

follows easily that there are unramified characters ¢, for i = 0,...,n — 1 such that
n—1
_ ~ — __; — ——1
P|GQp = @1/115 USSR (2.1.1)
i=0

Since SL2(F;,) € p;(Gq), the representation p is absolutely irreducible (see also
Lemma ) Let E/Q, be a finite extension with ring of integers O and residue
field F. Recall that G,, = GSp,, if n is even, and G,, = GO,, if n is odd. Write R
for the complete local Noetherian O-algebra which is the universal deformation
ring for G,,-valued deformations of » which have multiplier £!~", are unramified
outside p, and whose restrictions to Gq, are crystalline and ordinary with Hodge—
Tate weights 0,1,...,n — 1.

By [BGI19, Prop. 4.2.6], every irreducible component of R has Krull dimension
at least 1. (We are applying [BGI19, Prop. 4.2.6] with { equal to our p, and the
local deformation ring R, being the union of those irreducible components of the
corresponding crystalline deformation ring which are ordinary, as in [FKP22, Lem.
B.4]; this is indeed a nonempty set of components because shows that mGQp

admits an ordinary crystalline lift, by lifting the characters 1, to their Teichmiiller
lifts and the £~ to ¢~*. The remaining hypotheses of [BG19, Prop. 4.2.6] hold be-
cause p is absolutely irreducible, the multiplier character ¢!~ is odd/even precisely
when G,, is symplectic/orthogonal, and the Hodge-Tate weights 0,1,...,n — 1 are
pairwise distinct.)
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Let F/Q be an imaginary quadratic field in which p splits and which is disjoint
from (Q)**?({,). As in [CHTO8] we let G, denote the semi-direct product of
GY = GL,, x GL; by the group {1, 7} where

t

9(g,0))7" = (ag™", a),

with multiplier character v : G,, — GL; sending (g,a) to a and sends j to —1.
Following [BLGGTT4] §1.1], given a homomorphism ¢ : Gq — GO, (R), we have
an associated homomorphism ry, : Gg — G, (R), whose multiplier character is that
of r multiplied by % /Q where 0p/q is the quadratic character corresponding to
the extension F/Q. Explicitly, if A, is the matrix defining the pairing for the
group G, (so A, = 1, if n is odd and A, = J, if n is even, where J,, is the
standard symplectic form), then 7, can be defined as the composite

Gao 22 G, (R) x Go/Gr — Gu(R),

~

where pr is the projection Gq — Gq/Gr = {£1}, and the second map is the
injection

Gn x {£1} < G, (2.1.2)
given by

r((g,1)) = (9,v(9)),
r((g,=1)) = (g,v(9)) - (A1, (=1)"")z.

In particular we can apply this construction to p, and we write 7 := r5 : Gq —
Gn(F).

We let Rp be the complete local Noetherian O-algebra which is the universal
deformation ring for G,-valued deformations of 7 which have multiplier 51_"6;‘, s
are unramified outside p, and whose restrictions to the places above p are crystalline
and ordinary with Hodge-Tate weights 0,1,...,n — 1. The association ¢ — ry
induces a homomorphism Rr — R, which is easily checked to be a surjection.
(Indeed, it suffices to show that the map Rr — R induces a surjection on reduced
cotangent spaces. It in turn suffices to see that the induced map of Lie algebras
from is a split injection of G'q-representations, or equivalently (since p > 2)
a split injection of G p-representations, which is clear.)

By [Thol2l Thm. 10.1], R is a finite O-algebra (see [BLGGT14, Thm. 2.4.2] for
a restatement in the precise form we use here; in the notation of that statement, we
are taking l =p,n=p—1, S ={p}, p=¢'"", H, ={0,1,...,n —1}). Thus R is
a finite O-algebra, and since it has dimension at least 1, it has a Qp—valued point.

The corresponding lift p : Gq — Gn(ﬁp) of p is unramified outside p, has multi-
plier e!=", and is crystalline and ordinary with Hodge-Tate weights 0,1,...,n — 1.

The representation p is automorphic by [BLGGT14, Thm. 2.4.1] (taking F' =
Ql=pn=p—1,r=p and p = 51_”6$/F+; the hypothesis that (7,7) is
automorphic is immediate from [NT2I, Thm. A] applied to f, and the hypothesis
of residual adequacy is immediate from Lemma. More precisely, there is a self-
dual regular algebraic cuspidal automorphic representation 7 of GL, (Aq) whose
corresponding p-adic Galois representation p, : Gq — GLj, (Qp) is isomorphic to p.
By local-global compatibility (e.g. [BLGGT14, Thm. 2.1.1]) we see that 7 has level

one and weight zero, as claimed. [
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Lemma 2.2. Let p > 5 and let T : Gq — GLa(F,) be a Tepresentatwn with
SLy(Fp,) € 7(Gq). Then for p —2 < n < p, the group (Sym"™ )(GQ(CP))
adequate in the sense of [Thol7l Defn. 2.20].

Proof. Since SLy(F),) is perfect, we have SLy(F,) C 7(Gq(,)), so it follows from
Dickson’s classification that for some power g of p, we have SLa(F,) C 7(Gqc,))s
and p 1 [F(Gq(c,)) : SLa(F,)]. By [GHT17, Rem. 6.1}, it suffices to check that for U
the standard 2-dimensional F,-representation of G = SLy(F,), V := Sym" ' U is
adequate. It is absolutely irreducible (because n < p), and is therefore adequate
by [GHT17, Cor. 9.4], noting that since p > 5 we haven >p—2> (p+1)/2. O

2.3. The case p = 107. We now prove Theorem [B]

Theorem 2.4. There exist self-dual cuspidal automorphic representations m for
GL,, /Q of level one and weight zero for n = 105 and n = 106. In particular,
Hyp (GLA(Z), C) # 0 for these n.

Proof. Let f = AE?Eg = q — 48¢% — 195804¢® + ... be the unique normalized
cuspidal Hecke eigenform for SLy(Z) of weight £ = 26. Let p = 107, and p :
Gq — GL2(Fi97) denote the mod 107 Galois representation associated to f (in
its cohomological normalization). By [SD73|, Cor., p.SwD-31], the image of p is
exactly GL2(F1o7) (note that (Fi;)?® = F;). Since

a107(f) = 35830422465487817813321292 = —1 mod 107,

f is ordinary at 107.

Certainly (106,25) = 1, so in view of Theorem we only need to check
that pflGQP is semisimple. That this is indeed the case is a consequence of a
computation of Elkies, recorded in [Gro90, §17]: the form f admits a companion
form of weight p+ 1 — k = 82, i.e. an eigenform g of level one and weight 82 with
pp=E 2559. The semisimplicity of pf|GQ is an immediate consequence of the
existence of g (see e.g. [Gro90, Prop. 13. 8(3)]) By Theorem [2.1] we deduce the
existence of the desired automorphic forms 7 for GL,, /Q for n = 105,106 respec-
tively. The existence of such 7 is then well-known to imply the non-vanishing of
the cuspidal cohomology groups, see for example the survey [LS01 §3]. O

Remark 2.5. Combining Theoremwith the descent result [CKPSS04, Thm. 7.2],
we see that there is a globally generic, non-endoscopic, cuspidal automorphic repre-
sentation for Sp;, /Q of level one and weight zero. If A, is the moduli space of prin-
cipally polarized abelian varieties of dimension ¢, we deduce that HZo,(As2, C) #
0. However, as Olivier Taibi explained to us, one can construct cuspidal cohomology
classes of A, for much smaller g coming from endoscopic representations, and one
can even arrange that these endoscopic representations are tempered; see [CR15) §

1.24] for a closely related discussion.

Remark 2.6. Following [CG13], we see that modular forms satisfying the hypotheses
of Theoremalso exist for p = 139,151,173,179, ... in weights k with (p— 1,k —
1) = 1, leading to level one weight zero representations 7 for GL,, /Q with n = p—2
and n = p—1. A naive heuristic (using Maeda’s conjecture, although Sawin pointed
out to us an alternate approach based on Bhargava’s heuristics which gives answers
of the same order) predicts the existence of locally ordinary and split GLo(F,)-
representations with image containing SLo(F,) with probability of order 1/p for
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each weight where cuspidal eigenforms exist. This leads to the expectation that
one should expect examples of Theorem for a set of primes p of positive density
(using that ¢(p — 1)/p has non-zero limiting distribution, see [K68§]).

3. THE NON-ORDINARY CASE

We now explain how to improve n = 105 to n = 79, at the cost of a slightly
more involved construction. The idea behind the proof is again quite simple: we
replace the ordinary eigenform f in Theorem [2.I] by a non-ordinary form, where
one can hope to use the change of weight results of [BLGGT14]. It turns out that
there is no local obstruction to the existence of a weight zero lift of (a twist of)
Sym™ ™! ps it n=p—1or p. However, in the latter case the global representation
Sym" ™! py is reducible, and we do not know whether to expect a congruence to
exist in level one, while in the former case it has dimension p, which is excluded by
the hypotheses of [BLGGT14]. Nonetheless, in the case n = p — 1 we are able to
use a simplified version of the arguments of [BLGGT14], since we do not need to
change the level and only need to make a relatively simple change of weight, and
indeed our arguments are very close to those of [BLGGII].

Theorem 3.1. Let p > 5 be a prime, and let f be an eigenform of level SLo(Z)
and weight 2 < k < p, such that:

1) (k=1,p+1)=1.

(2) f is non-ordinary at p.
Then there exists a self-dual cuspidal automorphic representation m for GL, /Q of
level one and weight zero whose mod p Galois representation p,. : Gq — GL,(F))
is isomorphic to Sym?P ™ Py

Proof. Where possible, we follow the proof of Theorem We begin by showing
that p, has image containing SLp(F}). Since (k — 1,p + 1) = 1, the projective
image of p,(G IQP) contains a cyclic subgroup of order p +1 > 5, so py does not
have exceptional image (that is, projective image A4, Sy, or As). Since pf‘GQp is
absolutely irreducible, so is p;. Hence it remains to rule out the possibility that p;
has dihedral image. If this were the case, then since it is unramified outside p, it
would have to be induced from Q(y/p*) where p* = (—1)P=1/2p. But this would
imply that ps|Gq, is induced from Q,(v/p*), which would in turn imply that it is

2
invariant under twisting by e®~1/2 = wép /2 Since Pelr, =~ wi ™l @ wg(kfl),

this can only happen if & = (p + 3)/2 mod (p + 1), contradicting the assumption
that (k—1,p+1)=1.

Let F/F, be a finite extension such that p,;(Gq) C GLo(F), and write p :=
Sym?~! 5, so that p : Gq — GO, (F) has multiplier /77 = 1, and p(Gqy,)) is
adequate by Lemma, [2.2

Let 3,5 : Gq,, — Z; be the two Lubin-Tate characters trivial on Artq , (p),
and write wy for the reduction modulo p of 5. For any n,m > 1 we let p,, ,,, denote
the representation

Sym"™* Inng’”2 eb' : Gq, — GLn(Zy),

which is crystalline with Hodge-Tate weights 0,m, ..., (n — 1)m.
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‘We have
(p—1)/2

o~ gm(Pfl)/Q D @ Inngpz w;”(l—iﬂ)i.
i=1 v

pp,m

Suppose that (m,p + 1) = 1 (so that in particular m is odd). Then w;”(l_p) has
order exactly p+1, and the Gal(Q,2/Q,) Galois conjugate of w;n(kp)l is w;m(lfp)l.
It follows, under this assumption on m, that p,, ,, does not depend on m, so there
is an isomorphism of orthogonal representations p, ,, = p, ;. Our assumptions
that f is non-ordinary, that k < p, and that (k —1,p+ 1) = 1 therefore imply that
Plcq, = Pp,1, which admits the weight 0 crystalline lift 1.

Write R for the complete local Noetherian O-algebra which is the universal
deformation ring for GO,-valued deformations of p which have multiplier ¢! =7, are
unramified outside p, and whose restrictions to Gq, are crystalline of weight 0,
and lie on the same component of the corresponding local crystalline deformation
ring as pp1. By [BGI9, Prop. 4.2.6], every irreducible component of R has Krull
dimension at least 1.

Let F*/Q and F/F™T be quadratic extensions, with F'* real quadratic and F
imaginary CM, such that p is inert in F'T, the places of '™ above p split in F,
and F/Q is disjoint from (Q)*®*?((,). As in the proof of [BLGGT14, Prop. 4.1.1],
using [BLGGT14, Cor. A.2.3, Lem. A.2.5] we can find a cyclic CM extension M/ F of

degree (k—1), and characters 0,60 : Gy — 6; with 0 = 5/, such that the represen-
tation 5 := Indg; (0 ® play) is absolutely irreducible. Furthermore we choose 6, 6’
so that 00¢ = 27F 0'(¢')° = eP(2=%) and Indg; G,Indg’; 0" both are crystalline,
with all sets of labelled Hodge—Tate weights respectively equal to {0,1,..., k — 2},

{07]77 s 7p(k - 2)}
By construction, after possibly replacing F'* by a solvable extension, we can and
do assume that for each place v|p of F, we have

(Indg; 0)|Gpv ~ Pk—1,1|Gr,> (Indg; 9,)|GF,U ~ Pe—1,p|Gr, s

where ~ is the notion “connects to” of [BLGGTT14, §1.4]. We let Rr be the com-
plete local Noetherian O-algebra which is the universal deformation ring for G, _1),-
valued deformations of (the usual extension of) 5, which have multiplier e~ =1Pgp o |
are unramified outside p, and whose restrictions to the places above p are crystalline
with Hodge—Tate weights 0,1, ..., (k—1)p— 1, and lie on the same irreducible com-

ponents of the local crystalline deformation rings as
(pk—Lp ® Pp,1)|GF,U = p(krfl)p,l|GFv = (Pp,k—1 0y pk—1,1)|GFU'

We have a finite map Rr — R, taking a lifting p of p to Indg;‘; O play)-

We claim that the conclusions of [Thol7, Prop. 7.2] apply in our setting, so
that Rp is a finite O-algebra by [Thol2l Thm. 10.1]. Admitting this claim for a
moment, we deduce that R is a finite O-algebra, and since it has dimension at
least 1, it has a Qp—valued point. The corresponding lift p : Gq — GOp(Qp) of p
is unramified outside p, has multiplier e!~P, and is crystalline with Hodge-Tate
weights 0,1,...,p—1. By [Thol7, Thm. 7.1], Indgij (0®p|ap) is automorphic, so p
itself is automorphic by [BLGGTI14, Lem. 2.2.1, 2.2.2, 2.2.4].

It remains to show that we can apply [Thol7, Thm. 7.1, Prop. 7.2]. To this
end, we note that the notion of adequacy in [Thol7, Defn. 2.20] can be relaxed to
assume only that H'(H,ad) = 0, rather than assuming that H'(H,ady) = 0; more
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precisely, the proof of [Thol7, Prop. 2.21] only uses this weaker assumption. Now,
since p(Gq(¢,)) is adequate, and since p { (k — 1), we see that 5(Gp(,)) is adequate
by [BLGGI13, Lem. A.3.1] (whose proof goes over unchanged in this setting), as
required. O

Corollary 3.2. There exists a self-dual cuspidal automorphic representation w for
GL79 /Q of level one and weight zero.

Proof. There exists ([Gou0ll,[CG13]) a modular eigenform f of level 1 and weight k =
38 which is non-ordinary at p =79, and (37,794 1) = 1. O

Remark 3.3. The prime p = 79 is the second smallest prime for which there exists a
non-ordinary form f of weight k& < p. The smallest is p = 59 for which there exists a
non-ordinary eigenform of weight k = 16. However, (k—1,p+1) # 1 in this case, so
the construction fails in a number of places. Following [CG13], we see non-ordinary
eigenforms of weight k¥ < p with (p+ 1,k — 1) = 1 exist for p = 151,173,193, .. ..
As in Remark we expect that they exist for a positive density set of primes p.

Remark 3.4. If 7 is cuspidal automorphic of level one and weight zero for GL,, /Q
with n odd, then for each m > 1 there is conjecturally a cuspidal automorphic
representation of level one and weight zero for GL,,, /Q. Indeed, for each level
one cuspidal eigenform f of weight n + 1 (such an f exists because n > 26), the
conjectural tensor product 7 X Sym™ ™! f should be automorphic and cuspidal of
level one and weight zero.
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