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ABSTRACT

The modular degree mE of an elliptic curve E/Q is the minimal degree

of any surjective morphism X0(N) → E, where N is the conductor of E.

We give a necessary set of criteria for mE to be odd. In the case when N

is prime our results imply a conjecture of Mark Watkins. As a technical

tool, we prove a certain multiplicity one result at the prime p = 2, which

may be of independent interest.

1. Introduction

Let E be an elliptic curve over Q of conductor N . Since E is modular [3], there

exists a surjective map π : X0(N) → E defined over Q. There is a unique such

map of minimal degree (up to composing with automorphisms of E), and its

degree mE is known as the modular degree of E. This degree has been much

studied, both in relation to congruences between modular forms [38] and to the

Selmer group of the symmetric square of E [14], [15], [35]. Since this Selmer
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group can be considered as an elliptic analogue of the class group, one might

expect in analogy with genus theory to find that mE satisfies certain divisibility

properties, especially, perhaps, by the prime 2. More precisely, we remind the

reader that the class number of an imaginary quadratic extension K of Q is

odd if and only if the absolute discriminant DK of K is equal either to 4 or

to an odd prime (and similarly for the strict class number of a real quadratic

extension). In this paper we consider the analogous question of the parity of

mE . In particular we establish a conjecture of Watkins (see Theorem 1.7 below)

to the effect that if E has no rational 2-torsion points, then mE is odd only if

the conductor N of E is a prime congruent to 3 mod 8. In fact we prove the

following more precise theorem:

1.1 Theorem: If E/Q is an elliptic curve of odd modular degree, then:

1. The conductor N of E is divisible by no more than two odd primes,

2. E is of even analytic rank, and

3. One of the following holds:

(a) E has a rational point of order 2 (equivalently, admits a rational

2-isogeny);

(b) E has prime conductor and supersingular reduction at 2, and

Q(E[2]) is totally complex (equivalently, E(R) is connected);

(c) E has complex multiplication, and N = 27, 32, 49, or 243.

1.2 Example: The following examples of elliptic curves with odd modular degree

should serve to illustrate conditions (3a), (3b) and (3c). The curve X0(15)

has modular degree one and a rational two torsion point, and thus satisfies

condition (3a). Another example is given by the curve

y2 + xy = x3 − x2 − 58x− 105

(2537E in Cremona’s tables) of conductor 43 · 59 with modular degree 445 and

torsion subgroup Z/4Z. The curves X0(11) and X0(19) both have modular

degree one and satisfy condition (3b). An example of larger conductor is given

by

y2 + y = x3 + x2 − 4x− 10

of conductor 24859 and modular degree 3979. Finally, there are exactly four

curves of odd modular degree with complex multiplication, namely X0(27),
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X0(32), X0(49) (all of modular degree one) and

y2 + y = x3 + 2

of modular degree 9, conductor 243 and j-invariant 0.

1.3 Remark: Each of the conditions appearing in Theorem 1.1 is invariant under

isogeny, other than the condition that E(R) be connected, which is, however,

invariant under isogenies of odd degree. Since the modular parameterization of

E factors through the optimal member of the isogeny class of E (that is, the

member of its isogeny class having minimal modular degree; in older terminol-

ogy, a strong Weil curve), it is therefore no loss of generality in the proof of

Theorem 1.1 to assume that E is optimal.

1.4 Remark: Cremona and Watkins have computed the modular degree of every

optimal elliptic curve of conductor ≤ 25,000 [8]. These computations suggest

that there may be even stronger limitations on the conductor of a curve of odd

modular degree than those imposed by Theorem 1.1. Indeed, in the range of

Watkins’ computations, every curve of odd modular degree has conductor divis-

ible by at most two primes, and the conductor always has one of the following

forms: 2p, 4p, or pq, where p and q are odd primes1.

1.5 Remark: The statement of the Theorem regarding the analytic rank of E is

consistent with the conjecture of Birch and Swinnerton-Dyer and with the rank

conjecture of Watkins [35, Conj. 4.1] that 2r|mE , where r = rank(E(Q)).

1.6 Remark: In [32] the parity of mE was determined for a very particular

explicit class of elliptic curves, namely, the Neumann–Setzer curves, which are

the curves of prime conductor > 17 which have a rational 2-torsion point. (See

also the remark following Theorem 5.1 below.)

The following result, conjectured by Watkins ([32, Conj. 4.3], [35, Conj. 4.2]),

is a simple consequence of Theorem 1.1 (see Lemma 3.3):

1 Since this paper was circulated as a preprint, Soroosh Yazdani, in his UC Berkeley thesis

Modular abelian variety of odd modular degree, has established further limitations on

the possible shape of the conductor of an elliptic curve of odd modular degree. For

example, he has shown that if the conductor is divisible by more than one prime, and is

not divisible by 4, then it is of the form 2p or pq where p and q are odd primes satisfying

certain congruence conditions modulo 16. In each of these cases he has also shown that

E has rank 0.
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1.7 Theorem: Let E/Q be an elliptic curve of prime conductorN , and suppose

that E is neither a Neumann–Setzer curve, nor X0(17) (equivalently, E does

not have a rational 2-torsion point). If mE is odd, then N ≡ 3 mod 8.

One technique for proving that an elliptic curve E has even modular degree is

to show that the map π factors through X0(N)/w for some non-trivial Atkin–

Lehner involution w. We use this approach in Section 2 to prove Theorem 2.1,

which in turn implies parts (1) and (2) of Theorem 1.1, and shows that (3a)

holds if N is divisible by at least two primes. It remains to prove (3) in the

case when N is a prime power. The most difficult case to handle is when N

is actually prime, and in this case we deduce Theorem 1.1 from the following

result, proved in Section 3.

1.8 Theorem: Let N be prime, let T denote the Hecke algebra over Z acting

on weight two cuspforms on Γ0(N), and let m be a maximal ideal of T such

that T/m = F2, and such that the associated semi-simple Galois representation

ρ : Gal(Q/Q) → GL2(F2) is irreducible. If the completion Tm = Z2, then

1. m is supersingular at 2 (i.e. T2 ∈ m), or equivalently, ρ|D2
is absolutely

irreducible.

2. ρ is totally complex.

The relevance of this result to Theorem 1.1 is that, since N is prime in the

context of Theorem 1.8, a result of Ribet [38] shows (assuming, as we may,

that E is optimal) that the modular degree of E is even if and only if 2 is a

congruence prime for the newform of level N attached to E.

1.9 Remark: The equivalence between the supersingularity of m and the abso-

lute irreducibility of ρ|D2
can be deduced (in the standard way) as follows: if

V/Z2
denotes a finite group scheme subquotient of J [m]/Z2

(where J := J0(N))

whose generic fibre (regarded as a Galois module) is isomorphic to ρ|D2
, then

both conditions are equivalent to V being local-local. For the first condition,

this follows from the Eichler-Shimura relation and a calculation with Dieudonné

modules; see [23, p. 113]. For the second, note that if V is not local-local, then

it admits either a multiplicative or an étale subgroup scheme, either of which

gives rise to an étale subgroup scheme of the generic fibre V/Q2
. Thus ρ|D2

ad-

mits an unramified subrepresentation, and hence is not absolutely irreducible.
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Conversely, if ρ|D2
is absolutely reducible, then, extending scalars to F4 if nece-

ssary, it contains a one-dimensional subrepresentation, which (by local class

field theory at 2) must be an unramified character. The Zariski closure in V (or

in F4⊗F2
V ) of this subrepresentation gives rise to a rank one subgroup scheme

(or subvector space scheme) which is either étale or multiplicative. Thus V is

not local-local. Of course, suitably modified forms of these arguments apply to

any maximal ideal in T of residue characteristic prime to N (a not necessarily

prime level); see, for example, [13, Thms. 2.5, 2.6].

The proof of Theorem 1.8 is motivated by the following considerations: If p is

an odd prime and ρ : Gal(Q/Q) → GL2(Fp) is a surjective modular representa-

tion, then theorems of Wiles and Taylor–Wiles [37, 34] show that the universal

minimal deformation ring R∅ attached to ρ is isomorphic to the universal mini-

mal modular deformation ring T∅ (= Tm, since N is prime). Since T∅ is a finite

W (Fp) = Zp algebra with residue field Fp, it is exactly equal to Zp if and only

if it is an étale Zp-algebra. On the other hand, since R∅
∼= T∅, this is equivalent

to R∅ being étale over Zp, which is in turn equivalent to the reduced Zariski

cotangent space of R∅ being trivial. Since by construction R∅ represents the

minimal deformation functor, its reduced Zariski cotangent space considered as

a set has cardinality equal to the number of minimal deformations

ρ : Gal(Q/Q) → GL2(Fp[x]/(x
2))

of ρ. Thus to prove that Tm 6= Zp it suffices to show that there exists a non-

trivial minimal deformation of ρ to GL2(Fp[x]/(x
2)).

In spirit, the proof of Theorem 1.8 follows this strategy; in other words, we

determine whether or not Tm = Z2 by a calculation on tangent spaces. A

significant problem arises, however, since we are working in the case p = 2,

whilst the method of Wiles and Taylor–Wiles applies only to p > 2. This is not

a mere technical obstruction; many phenomena can occur when p = 2 that do

not occur for odd p. To name two: the possible failure of Tm to be Gorenstein

and the consequent failure of multiplicity one [21], and the fact that ρ can arise

from a totally real extension of Q. Calculations in the second case suggest

that the Taylor–Wiles strategy for proving R = T in the minimal case will

not work without some significant new idea, since the numerical coincidences

that occur for odd p whilst balancing the Selmer and dual Selmer groups in the

Greenberg–Wiles product formula (see, for example, the remarks of de Shalit [9],
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top of p. 442) do not occur in the case p = 2. Mark Dickinson [11] has proved

an R = T theorem for p = 2; however, his result requires many non-trivial

hypotheses, and indeed does not apply to any of the representations considered

in Theorem 1.8, since the Taylor–Wiles auxiliary prime arguments fail when

p = 2 and the image of ρ is dihedral. (The main application of [11] to date,

has been to representations with image SL2(F4) ' A5.) The recent preprint

[20] establishes modularity lifting results at the prime p = 2 in some generality;

nevertheless, these results do not apply to the situation we consider. Indeed, at

least as stated the results of [20] require that ρ has non-solvable image, and in

any case, they do not give the precise R = T statements that would be needed

for applications to Theorem 1.8.

Thus, instead of appealing to any general modularity results, we show that

Tm is bigger than Z2 by explicitly constructing (in certain situations) non-

trivial deformations of ρ
m

to F2[x]/(x
2) that are demonstrably modular (and

hence contribute to the reduced cotangent space of Tm). The most difficult

point is to show that these deformations are modular of the correct (minimal)

level. We prove this via a level-lowering result for modular forms with values

in Artinian Z2-algebras (Theorem 3.14 below). This level lowering result may

be of independent interest; for example, it provides evidence that an R = T

theorem should hold for those ρ of characteristic two to which it applies.

The proof of (3) when N is a prime power (but is not actually prime) is given

in Section 4. In Section 5 we make some concluding remarks.

Let us close this introduction by pointing out that recently Dummigan [12]

has provided a heuristic explanation for Watkins’ rank conjecture that also

relies on a hypothetical R = T theorem for the residual Galois representation ρ

arising from the 2-torsion on an elliptic curve E: he uses the symmetric square

map from ρ to Sym2ρ to lift elements from the 2-Selmer group of E to the

tangent space to the deformation ring of ρ. He also shows that the resulting

tangent space elements can never be “trapped” (in the words of [37, p. 450]) by

the Taylor–Wiles method of introducing auxiliary primes. Thus, although the

experimental work of Watkins on the parity of modular degrees, together with

the results of this paper and of [12], suggests the validity of an R = T theorem

for (at least certain) residual Galois representations arising from the 2-torsion

on elliptic curves, the proof of such a theorem seems out of the reach of current

techniques.
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2. N composite with at least two distinct prime factors

In this section we prove the following theorem.

2.1 Theorem: If E is an elliptic curve of odd modular degree, then the con-

ductor N of E is divisible by at most two odd primes, and E is of even analytic

rank. Furthermore, if N is divisible by at least two primes, then E contains a

rational 2-torsion point.

We begin with a preliminary lemma. Let E be an elliptic curve over a field

k; let O denote the origin of E. Let A denote the group of automorphisms of

E as a curve over k (i.e. k-rational automorphisms of E that do not necessarily

fix O), and suppose that W is a finite elementary abelian 2-subgroup of A.

2.2 Lemma: The order of W divides twice the order of E[2](k).

Proof. Let A0 denote the subgroup of A consisting of automorphisms of E as

an elliptic curve over k (i.e. k-rational automorphisms of E that do fix O). The

action of E(k) on E via translation realizes E(k) as a normal subgroup of A

which has trivial intersection with A0, and which together with A0 generates

A. Thus A sits in the split short exact sequence of groups

(1) 0 → E(k) → A→ A0 → 1.

(This is of course well-known. The surjection A → A0 may also be regarded

as the map A = Aut(E) → Aut(Pic0(E)) induced by the functoriality of the

formation of Picard varieties — the target being the group of automorphisms of

Pic0(E) as a group variety — once we identify E and Pic0(E) as group varieties

in the usual way.)

The short exact sequence (1) induces a short exact sequence

0 → W ∩ E(k) →W →W0 → 1,

where W0 denotes the projection of W onto A0. The known structure of A0

shows that W0 is either trivial or of order 2. Since W ∩ E(k) ⊂ E[2](k), the

lemma follows.

Proof of Theorem 2.1. The discussion of Remark 1.3 shows that it suffices to

prove the theorem under the additional assumption that E is an optimal quo-

tient of X0(N).
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Let W denote the group of automorphisms of X0(N) generated by the Atkin–

Lehner involutions; W is an elementary abelian 2-group of rank equal to the

number of primes dividing N . Since E is an optimal quotient of X0(N), the

action ofW onX0(N) descends to an action on E. If w ∈ W were to act trivially

on E, then the quotient map X0(N) → E would factor through X0(N)/w,

contradicting our assumption that E is of odd modular degree. Thus Lemma 2.2

shows that W has order at most 8, and hence that N is divisible by at most 3

primes. Furthermore, if N is divisible by more than one prime, then it shows

that E[2](Q) is non-trivial.

Suppose now that N is odd, so that X0(N) and E both have good reduction

at 2. We may then apply the argument of the preceding paragraph over F2, and

so conclude from Lemma 2.2 that W has order at most 4. Hence N is divisible

by at most two primes.

Recall that the sign of the functional equation of f is −wN . If E is of odd

analytic rank, and if fE denotes the normalized newform of level N attached to

E, then wNfE = fE , and so the automorphism of E induced by wN has trivial

image in A0. Thus wN acts on E via translation by an element P ∈ E(Q). Since

wN interchanges the cusps 0 and ∞ on X0(N), we see that P = π(0) − π(∞)

(where π : X0(N) → E is a modular parameterization of E, chosen so that

π(∞) = O).

The assumption that E has odd analytic rank also implies that L(fE, 1) = 0.

Since this L-value can be computed (up to a non-zero factor) by integrating fE

from 0 to ∞ in the upper half-plane, we conclude that P = O, and thus that

wN acts trivially on E. Hence π factors through the quotient X0(N)/wN of

X0(N), and so must be of even modular degree, a contradiction.

3. N prime

3.1. Reductions.

3.1 Lemma: Theorem 1.8 implies part (3) of theorem 1.1 for N prime.

Proof. Suppose that E is an elliptic curve of conductor N , assumed to be op-

timal in its isogeny class. Let fE be the associated Hecke eigenform of level

Γ0(N) and weight 2. From a theorem of Ribet [38], 2|mE if and only if fE

satisfies a congruence mod 2 with another cuspidal eigenform of level N . The

set of cuspidal eigenforms (in characteristic zero) congruent to f is indexed by
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Hom(Tm ⊗Q2,Q2). Thus fE satisfies no non-trivial congruences if and only if

Tm ⊗ Q2 = Q2, or equivalently if and only if Tm = Z2.

The following theorem of Grothendieck on Abelian varieties with semistable

reduction [18, Exposé IX, Prop. 3.5] will be useful.

3.2 Theorem (Grothendieck): Let A be an Abelian variety over Q with

semistable reduction at `. Let I` ⊂ Gal(Q/Q) denote a choice of inertia group

at `. Then the action of I` on the pn-division points of A for p 6= ` is rank two

unipotent; i.e., as an endomorphism, for σ ∈ I`,

(σ − 1)2A[pn] = 0.

In particular, I` acts through its maximal pro-p quotient, which is procyclic.

Shimura proved that a modular form f of weight 2 and level Γ0(N) gives rise

to a modular Abelian variety Af in such a way that the p-adic representations ρf

attached to f arise from the torsion points of Af . For prime N , these varieties

are semistable at N , and so we may apply the theorem above to deduce that

for p = 2, such representations ρ restricted to IN factor through a pro-cyclic

2-group. For representations ρ with image inside GL2(F2) ' S3, this means, in

particular, that the order of inertia at N is either 1 or 2.

Let us now consider a Galois representation ρ : Gal(Q/Q) → GL2(F2), aris-

ing from a cuspidal Hecke eigenform of level Γ0(N), whose image is not con-

tained in a Borel subgroup. (This is equivalent to ρ being irreducible, and also

to the image of ρ having order divisible by 3.) Let L be the fixed field of the

kernel of ρ; the extension L/Q is unramified outside 2 and N . If L/Q is unram-

ified at N , then ρ has Serre conductor 1, contradicting a theorem of Tate [33].

Thus by the discussion above we see that inertia at N factors through a group

of order 2, that L/Q is an S3-extension, and (hence) ρ is absolutely irreducible.

Let K/Q be a cubic subfield of L, and let F be the quadratic extension inside

L. Since ρ is finite flat at 2, it follows from Fontaine’s discriminant bounds [16]

that the power of 2 dividing the discriminant of F/Q is at most 4. Thus F/Q

must be Q(
√
±N) (as it is ramified at N). The extension L/F is unramified

at the prime above N , since as explained above, ρ|IN
has order dividing two.

Moreover, the extension L/K is ramified at 2 if and only if ρ is supersingular,

as follows from Remark 1.9.
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3.3 Lemma: If ρ is supersingular at two and L is not totally real, then

N ≡ 3 mod 8. In particular, Theorem 1.1 implies Theorem 1.7.

Proof. By class field theory the quadratic field F/Q admits a degree three

extension ramified precisely at 2 only if 2 is unramified and inert in F . This

occurs if and only if N ≡ 3 mod 8 and F = Q(
√
−N), or N ≡ 5 mod 8 and

F = Q(
√
N). Moreover if F = Q(

√
N), then K and L are totally real.

We shall prove Theorem 1.8 by showing in the following subsections that if ρ

satisfies at least one of the following conditions:

1. ρ is totally real;

2. ρ is unramified at 2;

3. ρ is ordinary, complex, and ramified at 2;

then Tm 6= Z2.

3.2. ρ is totally real. The theory of modular deformations is not well-

understood when ρ is totally real. Thus our arguments in this section are

geometric. We use the following theorem, due to Merel [25, Prop. 5]. (This

interpretation of Merel’s result is due to Agashe [1, Cor. 3.2.9]).

3.4 Theorem: Let N be prime. Then J0(N)(R) is connected.

If we let g denote the dimension of J := J0(N) it follows that J(R) ' (R/Z)g,

J(R)tors ' (Q/Z)g and J [2](R) = (Z/2Z)g.

Let J [2∞] = lim
−→

J [2m]. Then J [2∞] is a 2-divisible group over Q admitting

an action of T2.

Since T2 is finite and flat over the complete local ring Z2 there exists a

decomposition

T2 =
∏

Tm,

where the product is taken over the maximal ideals m of T of residue charac-

teristic two. If g(m) denotes the rank of Tm over Z2, then

∑

m

g(m) = rank(T2/Z2) = g.

If J [m∞] := J [2∞]⊗T2
Tm, then J [2∞] '∏J [m∞] (compare [23, §7, p. 91]).

From Lemma 7.7 of [23] we see that TamJ⊗Q2 is free of rank two over Tm⊗Q2

(where TamJ := Hom(Q2/Z2, J [m∞](Q)) is the m-adic Tate module of J), and



Vol. 169, 2009 ELLIPTIC CURVES OF ODD MODULAR DEGREE 427

thus that

(2) J [m∞](C) ∼= (Q2/Z2)
2g(m).

Let J [2]m := J [2] ⊗T2
Tm be the 2-torsion subgroup scheme of J [m∞].

3.5 Lemma: For all maximal ideals m of residue characteristic two there is an

equality

dimZ/2Z(J [2]m(R)) = g(m).

Proof. The isomorphism (2) induces an isomorphism J [2]m(C) ∼= (Z/2Z)2g(m).

Let σ ∈ Gal(C/R) denote complex conjugation. Then (σ − 1)2J [2]m(C) = 0.

Thus J [2]m(R) (which is the kernel of σ − 1) has dimension at least g(m). If

dimZ/2Z(Jm[2](R)) > g(m) for some m, then since

J [2](R) =
∏

J [2]m(R),

and since (as was noted above) dimZ/2Z(J [2](R)) = g, we would deduce the

inequality:

g =
∑

dimZ/2Z(J [2]m(R)) >
∑

m

g(m) = g,

which is absurd.

Now let ρ be a totally real (absolutely) irreducible continuous modular rep-

resentation of Gal(Q/Q) into GL2(F2) of level Γ0(N), and let m be the corre-

sponding maximal ideal of T. The main result of [2] shows that the Gal(Q/Q)-

representation J [m](Q) is a direct sum of copies of ρ. Thus, since ρ is totally

real, we find that

dimZ/2Z J [m](R) = dimZ/2Z J [m](C) ≥ dimZ/2Z ρ = 2.

Combining this inequality with the inclusion J [m](R) ⊆ J [2]m(R) and Lemma

3.5 we find that g(m) ≥ 2, and thus that Tm 6= Z2.

3.3. Rings of definition for modular forms. In this section, we explain

what we mean by a modular form with coefficients in a ring R. Given a level

structure Γ := Γ0(N) or Γ1(N) for some N ≥ 1, and a weight k, the space

of cuspforms Sk(Γ,C) is unambiguously defined. For any subring R of C,

we let Sk(Γ, R) denote the R-submodule of Sk(Γ,C) consisting of cuspforms

whose q-expansion coefficients lie in R. It is well-known that the natural map
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R ⊗Z Sk(Γ,Z) → Sk(Γ, R) is an isomorphism, and so for an arbitrary ring R

we define Sk(Γ, R) := R⊗Z Sk(Γ,Z).

In the case when Γ := Γ1(N), the nebentypus action of (Z/NZ)× on Sk(Γ,C)

preserves Sk(Γ,Z), and hence induces a nebentypus action on Sk(Γ, R) for any

R. If χ : (Z/NZ)× → C× is a character, then letting Z[χ] denote the subring

of C generated by the values of χ, we let Sk(Γ, χ,Z[χ]) denote the subspace of

Sk(Γ,Z[χ]) consisting of cuspforms with nebentypus character χ. If R is any

Z[χ]-algebra, then we let Sk(Γ, χ,R) denote the image of R⊗Z[χ] Sk(Γ, χ,Z[χ])

under the tautological isomorphism R⊗Z[χ]Sk(Γ,Z[χ]) ∼= Sk(Γ, R). (This image

is contained in the R-submodule of Sk(Γ, R) consisting of cuspforms on which

(Z/NZ)× acts through the character χ. However, if R is not flat over Z[χ],

then it need not coincide with this submodule.)

The following lemma confirms that certain elementary manipulations with

the spaces Sk(Γ, R) are permissible in the context of the above definitions.

3.6 Lemma: If R is an F2-algebra, then the following maps are well-defined.

1. A map S1(Γ1(M), χ,R) → S2(Γ0(M), R) which induces the identity on

q-expansions, where M is any integer ≥ 1, and χ is an odd character of

conductor dividing M and order two.

2. The level lowering map U2 : S2(Γ0(2
k+1M), R) → S2(Γ0(2

kM), R), for

any M ≥ 1 and k ≥ 1.

Proof. It suffices to treat the case R = F2, since there is, by definition, an iso-

morphismR⊗F2
Sk(Γ,F2) ∼= Sk(Γ, R). For part (1), lift f ∈ S1(Γ1(M), χ,F2) to

characteristic zero (possible, by definition), and then multiply by the Eisenstein

series E1,χ. We obtain a form g of level Γ0(M) which we then reduce to obtain

the desired map. Similarly, for part (2), lift f to characteristic zero. The opera-

tor U2 reduces the level (provided that k ≥ 1) and preserves the integrality of q-

expansions at ∞. Hence the reduction of g = U2f lies in S2(Γ0(2
kN),F2).

Let T denote the Z-algebra of endomorphisms of Sk(Γ,C) (or equivalently,

of Sk(Γ,Z)) generated by the Hecke operators. The algebra T acts on Sk(Γ,Z),

and hence acts on Sk(Γ, R) for any ring R. Furthermore, the usual pairing

〈f, T 〉 := a1(Tf) (f ∈ Sk(Γ, R), T ∈ T) induces an isomorphism Sk(Γ, R) ∼=
Hom(T, R) [29, Thm. 2.2]. (Here Hom means simply Hom of abelian groups.)

A cuspform h ∈ Sk(Γ, R) is an eigenform for all the Hecke operators precisely

when the associated homomorphism T → R is a ring homomorphism.
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If m is a maximal ideal in T, then the quotient map T → T/m corresponds

to an eigenform f
m

defined over the finite field T/m, associated to which is a

semi-simple Galois representation ρ
m

: Gal(Q/Q) → GL2(T/m). If this Galois

representation is absolutely irreducible, then Carayol [7, Thm. 3] (building on

constructions of Deligne, Shimura, and Serre) has constructed a lifting to a

continuous representation ρm : Gal(Q/Q) → GL2(Tm).

Let R be a complete local ring, with maximal ideal n, such that R/n has

positive residue characteristic. If f ∈ Sk(Γ, R) is a Hecke eigenform, then f

corresponds to a ring homomorphism φ : T → R, which extends to a homomor-

phism Tm → R for some maximal ideal m (the preimage of n under φ). (The

eigenform f can be thought of as a lifting of the eigenform f
m

to the ring R.)

If ρ
m

is absolutely irreducible, then pushing forward ρm via φ, we obtain an

n-adically continuous representation Gal(Q/Q) → GL2(R), which we refer to

as the Galois representation associated to f .

Let m be a maximal ideal of T for which T/m = F2. The completion

Tm is naturally a finite flat Z2-algebra, of say some rank r > 0. The iso-

morphism Hom(T,F2) ∼= Sk(Γ,F2) induces an isomorphism Hom(Tm,F2) ∼=
Sk(Γ,F2)[m

∞]. (Here the target is the subspace consisting of cuspforms anni-

hilated by some power of m.) Thus dimF2
(Sk(Γ,F2)[m

∞]) = r. In particular,

we obtain the following lemma.

3.7 Lemma: If there exist non-zero elements f , g ∈ S2(Γ,F2) such that mf =

m
2g = 0, while mg 6= 0, then Tm 6= Z2.

Proof. The existence of the elements f and g shows that

dimF2
(Sk(Γ,F2)[m

∞]) > 1.

If the level N of Γ is invertible in R, then we may also define the space of

Katz modular forms of level Γ and weight k over R, as certain rules on elliptic

curves with Γ-level structure defined over R-schemes, following the prescription

of [19]. If k ≥ 2, and if Γ = Γ1(N) with N ≥ 5, then there is a natural isomor-

phism SKatz
k (Γ, R) ∼= Sk(Γ, R), uniquely determined by its compatibility with

the formation of q-expansions. In the case when Γ = Γ0(N), the comparison of

SKatz
k (Γ, R) and Sk(Γ, R) is more complicated, due to the fact that the modular

curve X0(N) need not be a fine moduli space. (In the case when N is prime
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and k = 2, a detailed study of their relationship is given in [23, §II.4]. We will

not need to apply any of the results of this study.)

3.4. ρ is unramified at 2. We now return to the situation of Theorem 1.8.

Suppose that ρ is unramified at 2. This forces ρ to be ordinary. By the theory

of companion forms [17] one expects that ρ arises from a mod 2 form of level

Γ1(N) and weight 1. Although the results of [17] do not apply in this case,

Wiese [36] explicitly constructs such forms when the image of ρ is dihedral, as

it is in our situation. Let f ∈ SKatz
1 (Γ1(N),F2) be this companion form for ρ.

Let A be the Hasse invariant modulo 2, which is a (Katz) modular form (not

a cuspform) of level one with q expansion given by 1. Then Af and g = f2

are elements of SKatz
2 (Γ1(N),F2), and thus of S2(Γ1(N),F2). (Note that it is

no loss of generality to assume that N ≥ 5, since X1(N) has genus zero for

1 ≤ N ≤ 4.) Wiese’s construction furthermore allows us to choose f , and hence

Af and g, so as to have trivial nebentypus. A lemma of Carayol [6, §4.4]2 then

assures us that Af and g in fact lie in S2(Γ1(N), 1,F2) (where, in this notation,

1 denotes the trivial character of (Z/NZ)×), that is, that Af and g lie in

S2(Γ0(N),F2). If f has q-expansion f =
∑∞

n=1 anq
n, then Af has the same

q-expansion, while g has q-expansion g =
∑∞

n=1 a
2
nq

2n ≡ V2f , since an ∈ F2.

Since a1 = 1, we see that f and g are linearly independent. Furthermore, one

computes that (T`−a`)f = (T`−a`)g = 0 for all odd `, that (T2−a2)f = 0 and

(T2 − a2)
2g = 0, and that (T2 − a2)g 6= 0. Thus mf = m

2g = 0, while mg 6= 0,

and therefore, by Lemma 3.7, Tm 6= Z2 and we are done.

In fact, one can avoid the appeal to Carayol’s lemma in the above argument.

The only difficult point of Wiese’s construction is the case when ρ is totally real,

and this case of Theorem 1.8 is already covered by Section 3.2. If we assume

that ρ is not totally real, then we may construct f directly as an element of

S1(Γ1(N), χ) for some character χ. (See the first paragraph of the proof of [36,

Thm. 9].) One can then define Af ∈ S2(Γ0(N),F2) by applying the map of

Lemma 3.6 (1) to f , as well as g = f2 ∈ S2(Γ0(N),F2). The argument then

proceeds just as above.

2 The calculations of the following paragraph show that f and g are eigenforms for the

Hecke operators T` for every prime ` not dividing 2N , with eigenvalue equal to the

trace of the image under ρ of Frobenius at `. Since ρ is not induced from a charac-

ter of Gal(Q/Q(i)) (we saw above that it is rather induced from a cubic character of

Gal(Q/Q(
√
±N))), Carayol’s lemma applies.
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3.5. ρ is ordinary, complex and ramified at 2. Suppose that ρ is ordinary,

complex and ramified at 2. It follows that F/Q is complex and ramified at 2,

and thus that F = Q(
√
−N) for some N ≡ 1 mod 4. Moreover, the extension

L/F is unramified everywhere. Since N ≡ 1 mod 4 it follows that H := L(
√
−1)

is also unramified everywhere over F . The field H is Galois over Q, and clearly

(3) Gal(H/Q) ' S3 × Z/2Z.

We may embed S3 × Z/2Z into GL2(F2[x]/(x
2)) by fixing an identification of

S3 with GL2(F2), and mapping a generator of Z/2Z to the matrix
(

1 + x 0

0 1 + x

)

.

Composing the isomorphism (3) with this embedding yields a representation:

ρ : Gal(H/Q) ↪→ GL2(F2[x]/(x
2)).

The representation ρ has trivial determinant (equivalently, determinant equal

to the mod 2 cyclotomic character). We also claim that ρ is finite flat at two. To

check this, it suffices to prove this over Zur
2 . The representation ρ|Gal(Q

2
/Qur

2
)

factors through a group of order 2, and one explicitly sees that it arises as

the generic fibre of the group scheme (D ⊕D)/Zur
2 , where D is the non-trivial

extension of Z/2Z by µ2 considered in [23, Prop 4.2, p. 58]. Thus one expects

ρ to arise from an F2[x]/(x
2)-valued modular form of weight two and level N ,

corresponding to a surjective map of rings Tm → F2[x]/(x
2). This would follow

if we knew that Tm coincided with the minimal deformation ring associated to

ρ. Rather than proving this, however, we shall use weight one forms to explicitly

construct a weight two modular form giving rise to ρ.

Let χ4N be the character of conductor 4N associated to F . Consider two

faithful representations

ψ1 : Gal(L/Q) ∼= S3 ↪→ GL2(C), ψ2 : Gal(H/Q) ∼= S3 × Z/2Z ↪→ GL2(C).

Since F/Q is complex, these dihedral representations are odd and therefore give

rise to weight one modular forms h1, h2 in S1(Γ1(4N), χ4N ,C).

3.8 Lemma: The modular forms h1, h2 are ordinary at 2, have coefficients in

Z, and are congruent modulo 2. Let

g =
(h2 − h1)

2
∈ Z[[q]].
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Then g mod 2 is non-zero, and the form h=h1+xg∈S1(Γ1(4N), χ4N ,F2[x]/(x
2))

is an eigenform for all the Hecke operators, including U2. The GL2(F2[x]/(x
2))-

valued Galois representation associated to h is isomorphic to ρ.

Proof. The modular forms are both ordinary at 2 because the representations

ψ1 and ψ2 have non-trivial subspaces on which inertia at two is trivial (since

I2 acts through a group of order 2). They both have coefficients in Z, since

2 cos(π/3) ∈ Z. The congruence h1 ≡ h2 mod 2 follows from the fact that both

are ordinary-at-2 Hecke eigenforms, and that a(h1, `) = a(h2, `)χ4(`) for all odd

primes `, where χ4 is the character of conductor 4. From this one also sees that g

is non-trivial modulo two, and that h1, h2, g define forms in S1(Γ1(4N), χ4N ,Z).

Thus, by definition, h ∈ S1(Γ1(4N), χ4N ,F2[x]/(x
2)). The claim that h is

a Hecke eigenform follows formally (on q-expansions) from the fact that h1

and h2 are Hecke eigenforms that are congruent modulo 2. The discussion of

Section 3.3 implies the existence of a Galois representation associated to h,

which by comparing traces of Frobenius one easily sees is isomorphic to ρ.

Now that we have constructed the weight one form h of level 4N giving

rise to ρ, we would like to construct a corresponding weight two form of level

N . Applying the map of Lemma 3.6 (1) (concretely, multiplying h by the

Eisenstein series in M1(Γ1(4N), χ4N )), we see that there is a modular form

h′ ∈ S2(Γ0(4N),F2[x]/(x
2)) having the same q-expansion as h. Since h, and

hence h′, is an ordinary U2 eigenform, we may apply the U2 operator to de-

duce (using Lemma 3.6 (2)) that h′ ∈ S2(Γ0(2N),F2[x]/(x
2)). Applying The-

orem 3.14 (proved in the following subsection) we then deduce that in fact

h′ ∈ S2(Γ0(N),F2[x]/(x
2)), and (thus) that there is a modular form g′ ∈

S2(Γ0(N),F2) having the same q-expansion as g.

As in the discussion of Section 3.3, let f
m

∈ S2(Γ0(N),F2) be the Hecke

eigenform associated to m. Then mf
m

= 0, while an easy calculation shows

that mg ⊂ F2fm
\ {0}, and so also that m

2g = 0. We conclude from Lemma 3.7

that Tm 6= Z2.

3.6. Level-lowering for modular deformations. The goal of this section

is to prove a level-lowering result for modular forms with coefficients in Artinian

rings that strengthens the case p = 2 of [13, Thm. 2.8] (which in turn extends

a level lowering result proved by Mazur [30, Thm. 6.1] in the odd prime case).
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We first establish a version of the multiplicity one theorem [37, Thm. 2.1] for

p = 2. Under the additional assumption that ρ is not finite at 2, this theorem

was proved in [4, §2] (as was the corresponding result for odd level). Thus the

key point in our theorem is that ρ is allowed to be finite at 2, even though the

level is taken to be even.

3.9 Theorem: Let N be an odd natural number, and let T denote the full

Z-algebra of Hecke operators acting on weight two cuspforms of level Γ0(2N).

If m is a maximal ideal in T whose residue field k is of characteristic 2, and for

which the associated residual Galois representation

ρ : Gal(Q/Q) → GL2(k)

is (absolutely) irreducible, ordinary, and ramified at 2, then TamJ0(2N) (the

m-adic Tate module of J0(2N)) is free of rank two over the completion Tm.

To be clear, the condition “ordinary at 2” means that the image of a decom-

position group at 2 under ρ lies in a Borel subgroup of GL2(k). Since k is of

characteristic 2, we see that (for an appropriate choice of basis) the restriction

of ρ to an inertia group at 2 may be written in the form

ρ|I2 =

(

1 ∗
0 1

)

.

The assumption that ρ is ramified at 2 then implies that ∗ is not identically

zero. Thus the representation space of ρ has a unique line invariant under I2,

and so ρ is irreducible if and only if it is absolutely irreducible.

3.10 Lemma: Let k be a finite field of characteristic 2. If

ρ : Gal(Q2/Q2) → GL2(k)

is a continuous representation that is finite, ordinary, and ramified at 2, then

ρ has a unique finite flat prolongation over Z2 (up to unique isomorphism).

Furthermore, this prolongation is an extension of a rank one étale k-vector

space scheme by a rank one multiplicative k-vector space scheme.

Proof. Any finite flat group scheme that prolongs an unramified continuous

representation of

Gal(Q2/Q2)
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on a one-dimensional k-vector space is either étale or multiplicative. Thus

there are a priori four possible structures for a finite flat prolongation of ρ:

étale extended by étale; multiplicative extended by multiplicative; multiplicative

extended by étale; or étale extended by multiplicative. However, all but the

last possibility necessarily gives rise to an unramified generic fibre (note that

any extension of multiplicative by étale must split, by a consideration of the

connected étale sequence). Thus, since we assume ρ to be ramified, we see that

any prolongation of ρ must be an extension of a rank one étale k-vector space

scheme scheme by a rank one multiplicative k-vector space scheme.

To see that such a prolongation is unique, consider the maximal and minimal

prolongationsM and M ′ of ρ to a finite flat group scheme [27, Cor. 2.2.3]. Since

étale (and hence multiplicative) group schemes are determined by their generic

fibre, the result of the preceding paragraph shows that the natural morphism

M → M ′ necessarily induces an isomorphism on the connected components of

the identity, and on the corresponding groups of connected components (i.e.,

the corresponding maximal étale quotients). By the 5-lemma, this morphism is

thus an isomorphism, and the lemma follows.

We now show that certain results of Mazur [24] cited in the proof of [37,

Thm. 2.1] extend to the case p = 2. We put ourselves in the context of [24, §1],

and use the notation introduced therein. Namely, letK denote a finite extension

of Qp for some prime p, and let O denote the ring of integers of K. If A is an

abelian variety over K, then let A/O denote the connected component of

the identity of the Néron model of A over SpecO. For any power pr of p,

the pr-torsion subgroup scheme A[pr]/O of A/O is then a quasi-finite flat group

scheme over SpecO; we let FA[pr]/O denote its maximal finite flat subgroup

scheme, and A[pr]0/O denote the maximal connected closed subgroup scheme of

A[pr]/O. Since we took A/O to be the connected component of the Néron model

of A, the inductive limit FA[p∞]/O := lim
−→

FA[pr]/O is a p-divisible group,

and A[p∞]0/O := lim
−→

A[pr]0/O is the maximal connected p-divisible subgroup of

FA[p∞]/O.

The following proposition is a variation on [24, Prop. 1.3], in which we allow

the ramification of K over Qp to be unrestricted, at the expense of imposing

more restrictive hypotheses on the reduction of the abelian varieties appearing

in the exact sequence under consideration.
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3.11 Proposition: Let 0 → A→ B → C → 0 be an exact sequence of abelian

varieties over K such that A has purely toric reduction, whilst C has good

reduction. Then the induced sequence of p-divisible groups

0 → A[p∞]0/O → B[p∞]0/O → C[p∞]0/O → 0

is a short exact sequence of p-divisible groups over SpecO. Equivalently, for

any power pr of p, the induced sequence

0 → A[pr]0/O → B[pr]0/O → C[pr]0/O → 0

is a short exact sequence of finite flat group schemes over SpecO.

Proof. Since A has purely toric reduction, the group scheme A[pr]0/O is of mul-

tiplicative type for each r. Thus it necessarily maps isomorphically onto its

scheme theoretic image in B/O, and thus the induced map A[p∞]0/O → B[p∞]0/O
is a closed embedding.

Let C′ ⊂ B be an abelian subvariety chosen so that the induced map C′ → C

is an isogeny. Then C′ also has good reduction, and so C′[p∞]0/O → C[p∞]0/O
is an epimorphism of p-divisible groups over SpecO. Thus the induced map

B[p∞]0/O → C[p∞]0/O is also an epimorphism of p-divisible groups. A conside-

ration of generic fibres shows that the kernel of this surjection coincides with

the scheme-theoretic image of A[p∞]0/O in B[p∞]0/O, and so the proposition is

proved.

Proof of Theorem 3.9. We closely follow the method of proof of Theorem 2.1 (ii)

in [37] in the case when “∆(p) is trivial mod m” (in the terminology of that

proof; see [37, pp. 485–488]). If we let A denote the connected part of the kernel

of the map J0(2N) → J0(N)×J0(N) induced by Albanese functoriality applied

to the two “degeneracy maps” from level 2N to level N , then A is an abelian

subvariety of J0(2N) having purely toric reduction at 2, whilst the quotient B

of J0(2N) by A has good reduction at 2. From Proposition 3.11 we obtain (for

any r ≥ 1) the short exact sequence

0 → A[2r]0/Z2
→ J0(2N)[2r]0/Z2

→ B[2r]0/Z2
→ 0

of connected finite flat group schemes over SpecZ2. By functoriality of the

formation of this short exact sequence, and since A is a T-invariant subvariety

of J0(2N), we see that this is in fact a short exact sequence of T-module schemes.
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If G is a 2-power torsion commutative group scheme over some base S, with an

action of T, and hence of Z2⊗ZT, via endomorphisms, then by the localization

Mm we mean the kernel G[ε′], where the idempotent ε′ ∈ Z2 ⊗Z T is defined

as ε′ := 1 − ε, with ε ∈ Z2 ⊗Z T being the idempotent corresponding to the

direct factor Tm of Z2 ⊗Z T. Since ε and ε′ are orthogonal idempotents (by

construction), the natural map G[ε]
⊕

G[ε′] ∼= G is an isomorphism. Thus

passage to Gm is an exact functor on the category of 2-power torsion T-module

schemes over S.

In particular, localizing the above short exact sequence at m induces the

corresponding short exact sequence

(4) 0 → A[2r]0
m/Z2

→ J0(2N)[2r]0
m/Z2

→ B[2r]0
m/Z2

→ 0.

Passing to Q2-valued points induces a short exact sequence of Gal(Q2/Q2)-

modules

(5) 0 → A[2r]0
m

(Q2) → J0(2N)[2r]0
m

(Q2) → B[2r]0
m

(Q2) → 0,

which is a subexact sequence of the short exact sequence of Gal(Q2/Q2)-

modules

(6) 0 → A[2r]m(Q2) → J0(2N)[2r]m(Q2) → B[2r]m(Q2) → 0.

Let A[2r]m(Q2)
χ (respectively J0(2N)[2r]m(Q2)

χ, respectively B[2r]m(Q2)
χ)

denote the maximal Gal(Q2/Q2)-subrepresentation of A[2r]m(Q2) (respectively

J0(2N)[2r]m(Q2), respectively B[2r]m(Q2)) on which the inertia group acts

through the 2-adic cyclotomic character χ. The short exact sequence (6) induces

an exact sequence

(7) 0 → A[2r]m(Q2)
χ → J0(2N)[2r]m(Q2)

χ → B[2r]m(Q2)
χ.

3.12 Lemma: Each of the groups schemes appearing in the exact sequence (4)

is of multiplicative type, and the exact sequences (5) and (7) coincide (as sub-

sequences of (6)).

Proof. We first remark that (6) is the exact sequence of Tm[Gal(Q2/Q2)]-modu-

les underlying the corresponding exact sequence of Tm[Gal(Q/Q)]-modules

0 → A[2r]m(Q) → J0(2N)[2r]m(Q) → B[2r]m(Q) → 0.

Since ρ is assumed irreducible as a k[Gal(Q/Q)]-representation, each of the

modules appearing in this exact sequence is a successive extension of copies
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of ρ. The same is thus true of each of the modules appearing in the exact

sequence (6).

Since A has purely toric reduction, it is clear that A[2r]0
m/Z2

is of multiplica-

tive type, and so

(8) A[2r]0
m

(Q2) ⊂ A[2r]m(Q2)
χ.

Fix a filtration 0= W0 ⊂W1 ⊂ · · · ⊂Wn = A[2r]m(Q2) ofA[2r]m(Q2) for which

the successive quotients Wi+1/Wi are isomorphic to ρ. Since A has purely toric

reduction the quotientA[2r]/Q2
/A[2r]0/Q2

is Cartier dual to Â[2r]0/Q2
(where Â is

the dual abelian variety to A), and so A[2r]m(Q2)/A[2r]0
m

(Q2) is an unramified

Gal(Q2/Q2)-representation. Since ρ is assumed ramified at 2, this implies that

Wi ∩A[2r]0
m
(Q2) ( Wi+1 ∩A[2r]0

m
(Q2)

for each i ≥ 0. Furthermore,

Wi+1 6⊂ A[2r]m(Q2)
χ +Wi

for each i ≥ 0, because χmod 2 is trivial. SinceWi+1/Wi
∼= ρ is two dimensional

over k for each i ≥ 0, we conclude by induction on i that

Wi ∩A[2r]0
m

(Q2) = Wi ∩A[2r]m(Q2)
χ

for each i ≥ 0. Taking i = n then shows that the inclusion (8) is in fact an

equality.

Since B has good reduction at 2, we have equality FB[2r]/Z2
= B[2r]/Z2

.

As noted above, any Jordan–Hölder filtration of the localization B[2r]m(Q) as

a T[Gal(Q/Q)]-module has all its associated graded pieces isomorphic to ρ.

Taking scheme-theoretic closures of such a filtration in B[2r]/Z2
, we obtain a

filtration of the localization B[2r]
m/Z2

by finite flat closed subgroup schemes,

whose associated graded pieces are prolongations of ρ. Now Lemma 3.10 shows

that the connected component of any such finite flat prolongation is multiplica-

tive. Thus B[2r]0
m/Z2

is indeed multiplicative, whilst B[2r]m(Q2)/B[2r]0
m

(Q2)

is an unramified Gal(Q2/Q2)-module. Arguing as in the preceding paragraph

gives the required equality

B[2r]0
m

(Q2) = B[2r]m(Q2)
χ.

Since any extension of multiplicative type groups is again of multiplicative

type, we see that J0(2N)[2r]0
m/Z2

is also of multiplicative type, and that the
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exact sequence (5) is a subsequence of the exact sequence (7). We have fur-

thermore shown that first and third non-trivial terms of these two sequences

coincide. This implies that these exact sequences do indeed coincide.

Specializing Lemma 3.12 to the case r = 1 shows that J0(2N)[2]0
m
(Q2) is the

maximal unramified Gal(Q2/Q2)-subrepresentation of J0(2N)[2]m(Q2) (since

χ mod 2 is trivial). Recall that there is a natural isomorphism

Tan(J0(2N)[2]0
/F2

) ∼= Tan(J0(2N)/F2
)

(indeed, this is true with J0(2N)/F2
replaced by any group scheme over F2),

and also a natural isomorphism Tan(J0(2N)[2]0
/F2

) ∼= J0(2N)[2]0(Q2) ⊗F2
F2

(as follows from the discussion on [37, p. 488]). Localizing at m, and taking into

account [37, Lem. 2.2], which is valid for p = 2, we find that J0(2N)[2]0
m
(Q2)

is a cyclic Tm-module, and thus that the maximal unramified Gal(Q2/Q2)-

subrepresentation of J0(2N)[2]m(Q2) is a cyclic Tm-module.

Let ρm : Gal(Q/Q) → GL2(Tm) denote the Galois representation associated

to m by [7, Thm. 3]. Carayol has proved [7, Thm. 4] that there is an isomorphism

TamJ0(2N) ∼= J ⊗Tm
ρm for some ideal J in Tm, and thus an isomorphism

J0(2N)[2]m(Q2)
∼= (J/2J) ⊗Tm

ρm. We conclude that J/2J is a cyclic Tm-

module, and hence that J is a principal ideal in Tm. The discussion of [7, 3.3.2]

shows that in fact J ∼= Tm and that TamJ0(2N) is free of rank two over Tm, as

claimed.

3.13 Corollary: In the situation of Theorem 3.9, the completion Tm is a

Gorenstein Z2-algebra.

Proof. This follows from the theorem together with the self-duality of the m-

adic Tate module under the Weil pairing.

We now prove our level lowering result. Let A be an Artinian ring with finite

residue field k of characteristic 2, and suppose given a continuous representation

ρ : Gal(Q/Q) → GL2(A) that is modular of level Γ0(2N) for some odd natural

numberN , in the sense that it arises from a Hecke eigenform h ∈ S2(Γ0(2N), A).

Let ρ denote the residual representation attached to ρ (so ρ arises from the Hecke

eigenform h ∈ S2(Γ0(2N), k) obtained by reducing h modulo the maximal ideal

of A).
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3.14 Theorem: If ρ : Gal(Q/Q) → GL2(A) is a modular Galois representation

of level Γ0(2N) as above, such that

1. ρ is (absolutely) irreducible,

2. ρ is ordinary and ramified at 2, and

3. ρ is finite flat at 2,

then ρ arises from an A-valued Hecke eigenform of level N .

Proof. The Hecke eigenform h corresponds to a ring homomorphism φ : T → A.

Since A is local of residue characteristic 2, the map φ factors through the com-

pletion Tm of T at some maximal ideal m of residue characteristic 2, and the

residual representation ρ is the residual Galois representation attached to the

maximal ideal m. We let ρm denote the Galois representation

ρm : Gal(Q/Q) → GL2(Tm)

attached to m by [7, Thm. 3]. The Galois representation ρ attached to h coin-

cides with the pushforward of ρm via φ.

Replacing A by the image of φ, we may and do assume from now on that φ

is surjective. We let I ⊂ Tm denote the kernel of φ. Since A is Artinian, we

may choose r ≥ 1 so that 2r ∈ I. Theorem 3.9 shows that the m-adic Tate

module TamJ0(2N) is isomorphic as a Gal(Q/Q)-representation to ρm; thus

J0(2N)[2r]m(Q) is isomorphic to the reduction mod 2r of ρm. Since Tm is a

Gorenstein Z2-algebra, by corollary 3.13, we see that Tm/2
rTm is a Goren-

stein Z/2rZ-algebra, and thus that there is an isomorphism (Tm/2
rTm)[I] ∼=

HomZ/2r (Tm/I,Z/2
r) of Tm/I = A-modules. In particular, J0(2N)[I](Q/Q) ⊂

J0(2N)[2r]m(Q) is a faithful A-module, isomorphic as an A[Gal(Q/Q)]-module

to HomZ/2r(Tm/I,Z/2
r) ⊗A ρ. To simplify notation, we will write

(9) V := J0(2N)[I](Q) ∼= HomZ/2r(Tm/I,Z/2
r) ⊗A ρ.

By assumption, ρ prolongs to a finite flat group scheme M over Spec Z2.

If we fix a Jordan–Hölder filtration of ρ as an A[Gal(Q/Q)]-module, then the

associated graded pieces are each isomorphic to ρ, and so Lemma 3.10 and

[5, Prop. 2.5] together imply that M is uniquely determined by ρ, whilst [5,

Lem. 2.4] then implies that M is naturally an A-module scheme. From (9) we

see that V also prolongs to a finite flat A-module scheme

V ∼= HomZ/2r (Tm/I,Z/2
r) ⊗A M
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over Z2. Again, Lemma 3.10 and [5, Prop. 2.5] show that V is the unique finite

flat prolongation of V .

Lemma 3.10 furthermore implies that M is the extension of an étaleA-module

scheme Mét by a multiplicative A-module scheme M0, each of which is free of

rank one as an A-module scheme. Thus V is also an extension of an étale A-

module scheme V ét by multiplicative A-module scheme V0, each of which is

faithful as an A-module scheme. Let V ét and V 0 denote the generic fibres of

these schemes.

We write J to denote the Néron model of J0(2N) over SpecZ2. For a scheme

over Z2, use the subscript “s” to denote its special fibre over F2. The special

fibre Js admits the following filtration by T-invariant closed subgroups:

0 ⊂ T ⊂ J 0
s ⊂ Js,

where T is the maximal torus contained in Js, and J 0
s is the connected compo-

nent of the identity of Js. The quotient J 0
s /T is an abelian variety on which T

acts through its quotient Told (where Told denotes the quotient of T that acts

faithfully on the space of 2-old forms of level 2N). The connected component

group Φ := Js/J 0
s is Eisenstein [30, Thm. 3.12].

The following lemma provides an analogue in our situation of [30, Lem. 6.2]

(and generalizes one step of the argument in the proof of [13, Thm. 2.8]).

3.15 Lemma: The Zariski closure of V in J is a finite flat A-module scheme

over Z2 (which is thus isomorphic to V).

Proof. Since V0 is a multiplicative type group scheme, inertia at 2 acts on

V 0(Q2) through the cyclotomic character. It follows from Lemma 3.12 that V 0

is contained in the generic fibre of J0(2N)[2r]0
m/Z2

, and thus that the Zariski

closure of V 0 in J is indeed finite flat, and in fact of multiplicative type. Thus it

coincides with V0, and so we see that the embedding of V 0 in J0(2N) prolongs to

an embedding of V0 in J . Since the quotient V ét = V/V0 is étale, Lemma 5.9.2

of [18, Exposé IX] serves to complete the proof of the lemma.

Lemma 3.15 allows us to regard V as a closed T-submodule scheme of J , and

thus to regard Vs as a closed T-submodule scheme of Js. Since ρ is irreducible

and Φ is Eisenstein, we see that Vs is in fact contained in J 0
s . On the other

hand, since T is a torus, we see that Vs

⋂

T ⊂ V0
s . Thus V ét

s appears as a

subquotient of J 0
s /T , and in particular the T-action on V ét factors through the
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quotient Told of T. Since V ét
s is a faithful A-module scheme, we see that the

map φ : T → A factors through Told, completing the proof of the theorem.

We remark that the obvious analogue of Theorem 3.14 in the case of odd

residue characteristic is also true. The proof is similar but easier, relying on the

uniqueness results on finite flat models due to Raynaud [27].

4. N a proper prime power

There are only finitely many elliptic curves of conductor 2k for all k, and we may

explicitly determine which have odd modular degree. Therefore we assume that

E has conductor N , where N = pk with k ≥ 2 and p ≥ 3. Let χ be the unique

quadratic character of conductor p. Let E′ be the elliptic curve E twisted by

χ. The curve E′ also has conductor N , and moreover, the associated modular

forms fE and fE′ are congruent modulo 2, since twisting by quadratic characters

preserves E[2]. Since N is odd, any non-trivial congruence modulo 2 between

fE and other forms in S2(Γ0(N)) forces the modular degree mE to be even [38].

Thus we are done unless fE = fE′ = fE ⊗ χ. It follows (for example, by [28])

that the Galois representation associated to fE is induced from an imaginary

quadratic field, and E has complex multiplication by this field. Alternatively,

the equality fE = fE′ implies that E is isogenous to its twist, and one may

deduce this way that E has CM. If E has CM and prime power conductor, then

E is one of finitely many well-known elliptic curves, for which we can directly

determine the modular degree by consulting current databases (for N = 1632,

we use the elliptic curve database of Stein–Watkins, described in [31]).

5. Further remarks

Certainly not every E satisfying the conditions of Theorem 1.1 will actually

have odd modular degree, and one could try to refine this result by deducing

additional necessary conditions that E must satisfy in order to have odd modu-

lar degree. In this section we say a little about the related question of whether

or not 2 is a congruence prime for the associated modular form fE , when E

satisfies either of conditions (3a) or (3b) of the theorem.

For curves E with a rational two torsion point, the modular form fE au-

tomatically satisfies a mod two congruence with an Eisenstein series, and so

detecting whether f satisfies a congruence with a cuspform is a more subtle
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phenomenon than in the non-Eisenstein situation. One approach might be to

relate the Hecke algebra to an appropriate universal deformation ring (if the

latter exists). If N is prime, this can be done [5], and this enables one to de-

termine when Tm = Z2 for such representations. The specific determination of

when Tm = Z2, however, was already achieved (for N prime and ρ reducible)

by Merel in [25]:

5.1 Theorem: Let N ≡ 1 mod 8 be prime, and let Tm be the localization at

the Eisenstein prime at 2. Then Tm 6= Z2 if and only if N = u2 + 16v2 and

v ≡ (N − 1)/8 mod 2.

If E is a Neumann–Setzer curve, then N = u2+64 for some u ∈ Z. The result

of Merel above then clearly implies that the optimal Neumann–Setzer curve E

has odd modular degree if and only if N 6≡ 1 mod 16. (An alternative proof

of this fact, relying on the results of [23], is given in [32, Thm. 2.1]). If E has

composite conductor, then one might try to generalize the results of [25] or [5]

to this setting.

Suppose now that E has prime conductor, that ρ is irreducible and super-

singular, and that Q(E[2]) is totally complex. If one had an R = T result of

the type discussed in the introduction, then to obtain further necessary condi-

tions for E to have odd modular degree, it would suffice to establish sufficient

conditions for the existence of an appropriate non-trivial minimal deformation

ρ : Gal(Q/Q) → GL2(F2[x]/(x
2)) lifting ρ. For representations ρ that are

complex and ramified at 2, but ordinary, we constructed such a ρ directly in

subsection 3.5 by considering quadratic genus fields. When E is supersingu-

lar, such deformations ρ (when they exist) may be more subtle and cannot

necessarily be constructed so directly.
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1993, pp. 23–36.
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