Embeddings of Computable Structures

Asher M. Kach

(Joint work with Wesley Calvert, Oscar Levin, Joe Miller, and Reed Solomon)

University of Connecticut - Storrs
http://www.math.uconn.edu/~kach

University of Notre Dame
15 January 2009
Outline

1. Introduction and Motivation

2. Embeddings within Universal Classes
 - Directed Graphs
 - All Universal Structures

3. Embeddings within Non-Universal Classes
 - Linear Orders
 - Ordered Fields
 - Trees (Viewed as Posets)
 - Equivalence Relations
 - Boolean Algebras

4. Embeddings as Substructures

5. Summary and Questions
If \(\tau \) is an infinite order type, then \(\tau \) has a subset of order type \(\omega \) or \(\omega^* \).
Background

Theorem

If \(\tau \) is an infinite order type, then \(\tau \) has a subset of order type \(\omega \) or \(\omega^* \).

Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type \(\omega + \omega^* \) having no computable subset of order type \(\omega \) or \(\omega^* \).
Theorem

If \(\tau \) is an infinite order type, then \(\tau \) has a subset of order type \(\omega \) or \(\omega^* \).

Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type \(\omega + \omega^* \) having no computable subset of order type \(\omega \) or \(\omega^* \).

Theorem (Lerman [7]; Rosenstein [8])

If \(\mathcal{L} \) is a computable presentation of an infinite order type \(\tau \), then \(\mathcal{L} \) has a computable subset of order type \(\omega, \omega^*, \omega + \omega^*, \) or \(\omega + \eta \cdot \zeta + \omega^* \).

Moreover, all of these order types are necessary.
Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

$$R_e: \text{If } W_e \text{ is infinite, then } W_e \nsubseteq \omega \text{ and } W_e \nsubseteq \omega^*.$$

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual fence indicating the current boundary between ω and ω^*.
Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual fence indicating the current boundary between ω and ω^*.

Start 0 2 4 5 3 1
Constructing $\omega + \omega^*$

Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual *fence* indicating the current boundary between ω and ω^*.
Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

$$R_e: \text{If } W_e \text{ is infinite, then } W_e \not\subseteq \omega \text{ and } W_e \not\subseteq \omega^*.$$

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual *fence* indicating the current boundary between ω and ω^*.

After $2, 4 \in W_0$

$0 \ 2 \ \ldots \ \ldots \ 4 \ 5 \ 3 \ 1$
Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual fence indicating the current boundary between ω and ω^*.

Work towards $\omega + \omega^*$

0 2 7 9 \ldots \ldots 8 6 4 5 3 1
Constructing $\omega + \omega^*$

Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^$ having no computable subset of order type ω or ω^*.***

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual *fence* indicating the current boundary between ω and ω^*.

See $3, 5 \in W_2$

0 2 7 9 . . .

... 8 6 4 5 3 1
Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual fence indicating the current boundary between ω and ω^*.

See $6, 8 \in W_2$

$0 \ 2 \ 7 \ 9 \ldots$

$\ldots \ 8 \ 6 \ 4 \ 5 \ 3 \ 1$
Constructing $\omega + \omega^*$

Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual fence indicating the current boundary between ω and ω^*.

After $6, 8 \in W_2$

\[0 \ 2 \ 7 \ 9 \ 8 \ldots \]

\[\ldots \ 6 \ 4 \ 5 \ 3 \ 1\]
Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^*$ having no computable subset of order type ω or ω^*.

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.

Meet R_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, maintain a virtual fence indicating the current boundary between ω and ω^*.

See $7, 9 \in W_1$

\[0 \ 2 \ 7 \ 9 \ 8 \ldots \]

\[\ldots \ 6 \ 4 \ 5 \ 3 \ 1 \]
Constructing $\omega + \omega^*$

Theorem (Denisov [3]; Tennenbaum [8])

There is a computable presentation of the order type $\omega + \omega^$ having no computable subset of order type ω or ω^*."

Proof.

Construct a computable presentation of the order type $\omega + \omega^*$ meeting, for each e, the following requirement R_e.

R_e: If \mathcal{W}_e is infinite, then $\mathcal{W}_e \not\subseteq \omega$ and $\mathcal{W}_e \not\subseteq \omega^*$.

Meet R_e by putting one element of \mathcal{W}_e into ω and one element into ω^*. To facilitate this, maintain a virtual *fence* indicating the current boundary between ω and ω^*.

After $7, 9 \in \mathcal{W}_1$

\[
\begin{array}{cccccccccccc}
0 & 2 & 7 & \ldots & & & & & & & & \ldots & 9 & 8 & 6 & 4 & 5 & 3 & 1 \\
\end{array}
\]
The Questions

Question (#1)
Are there computable order types τ_1 and τ_2 having computable presentations \mathcal{L}_1 and \mathcal{L}_2 such that \mathcal{L}_1 does not computably embed into \mathcal{L}_2?

Question (#2)
Are there computable order types τ_1 and τ_2 such that \mathcal{L}_1 does not computably embed into \mathcal{L}_2 for any computable presentations \mathcal{L}_1 and \mathcal{L}_2?
Remark

Of course, there is no reason attention should be restricted to the context of linear orders.

Question

If \mathcal{C} is a class of computable algebraic structures, are there $\overline{S}_1, \overline{S}_2 \in \mathcal{C}$ such that S_1 does not computably embed into S_2 for any computable presentations S_1 and S_2?
Outline

1. Introduction and Motivation

2. Embeddings within Universal Classes
 - Directed Graphs
 - All Universal Structures

3. Embeddings within Non-Universal Classes
 - Linear Orders
 - Ordered Fields
 - Trees (Viewed as Posets)
 - Equivalence Relations
 - Boolean Algebras

4. Embeddings as Substructures

5. Summary and Questions
Emmbeddings of Directed Graphs

Theorem (Kach and Miller [6])

If \mathcal{C} is the class of computable directed graphs, then there are structures S_1 and S_2 in \mathcal{C} such that for no hyperarithmetic presentations of S_1 and S_2 does S_1 hyperarithmetically embed into S_2.

Definition

If $T \subseteq \omega^{<\omega}$ is any tree, define G_T to be the directed graph whose universe is

$$\{z_{\sigma} : \sigma \in T\} \cup \{x_{\sigma \upharpoonright i,0}, \cdots, x_{\sigma \upharpoonright i,i}, y_{\sigma \upharpoonright i,0}, \cdots, y_{\sigma \upharpoonright i,i} : \sigma \upharpoonright i \in T\}$$

and whose edge relations include $E(z_{\sigma}, x_{\sigma \upharpoonright i,0})$, $E(z_{\sigma}, y_{\sigma \upharpoonright i,0})$, $E(x_{\sigma \upharpoonright i,j}, x_{\sigma \upharpoonright i,j+1})$, $E(y_{\sigma \upharpoonright i,j}, y_{\sigma \upharpoonright i,j+1})$, $E(x_{\sigma \upharpoonright i,i}, z_{\sigma \upharpoonright i})$, and $E(y_{\sigma \upharpoonright i,i}, z_{\sigma \upharpoonright i})$ for $\sigma \in T$, $\sigma \upharpoonright i \in T$, and $0 \leq j < i$.
Example

If T is as on the left, then G_T is as on the right.

Proof. Let S_1 be the graph of exactly one (directed) infinite path and let S_2 be the graph G_T where $T \subseteq \omega < \omega$ is a computable tree with infinite paths but no hyperarithmetic paths. Then S_1 classically embeds into S_2, but there cannot be hyperarithmetic presentations with a hyperarithmetic embedding. For if there was a hyperarithmetic embedding π between hyperarithmetic presentations, there would be a hyperarithmetic path in T.
Example
If T is as on the left, then G_T is as on the right.

Proof.
Let S_1 be the graph of exactly one (directed) infinite path and let S_2 be the graph G_T where $T \subseteq \omega^\omega$ is a computable tree with infinite paths but no hyperarithmetic paths.

Then S_1 classically embeds into S_2, but there cannot be hyperarithmetic presentations with a hyperarithmetic embedding. For if there was a hyperarithmetic embedding π between hyperarithmetic presentations, there would be a hyperarithmetic path in T.
Example

If T is as on the left, then \mathcal{G}_T is as on the right.

Proof.

Let \overline{S}_1 be the graph of exactly one (directed) infinite path and let \overline{S}_2 be the graph \mathcal{G}_T where $T \subseteq \omega^\omega$ is a computable tree with infinite paths but no hyperarithmetic paths.

Then \overline{S}_1 classically embeds into \overline{S}_2, but there cannot be hyperarithmetic presentations with a hyperarithmetic embedding. For if there was a hyperarithmetic embedding π between hyperarithmetic presentations, there would be a hyperarithmetic path in T.
Example

If T is as on the left, then G_T is as on the right.

Proof.

Let S_1 be the graph of exactly one (directed) infinite path and let S_2 be the graph G_T where $T \subseteq \omega^{<\omega}$ is a computable tree with infinite paths but no hyperarithmetic paths.

Then S_1 classically embeds into S_2, but there cannot be hyperarithmetic presentations with a hyperarithmetic embedding. For if there was a hyperarithmetic embedding π between hyperarithmetic presentations, there would be a hyperarithmetic path in T.

\[\Box \]
Example

If T is as on the left, then G_T is as on the right.

Proof.

Let \mathcal{S}_1 be the graph of exactly one (directed) infinite path and let \mathcal{S}_2 be the graph G_T where $T \subseteq \omega^{<\omega}$ is a computable tree with infinite paths but no hyperarithmetic paths.

Then \mathcal{S}_1 classically embeds into \mathcal{S}_2, but there cannot be hyperarithmetic presentations with a hyperarithmetic embedding. For if there was a hyperarithmetic embedding π between hyperarithmetic presentations, there would be a hyperarithmetic path in T.

Asher M. Kach (UConn)
Corollary (With Hirschfeldt, Khoussainov, Shore, and Slinko [4])

If \mathcal{C} is the class of computable

- Directed graphs,
- Undirected graphs,
- Commutative rings,
- Two-step nilpotent groups,
- Integral domains, or
- Commutative semigroups,

then there are structures \overline{S}_1 and \overline{S}_2 in \mathcal{C} such that for no hyperarithmetic presentations S_1 and S_2 does S_1 hyperarithmetically embed into S_2.
Outline

1. Introduction and Motivation

2. Embeddings within Universal Classes
 - Directed Graphs
 - All Universal Structures

3. Embeddings within Non-Universal Classes
 - Linear Orders
 - Ordered Fields
 - Trees (Viewed as Posets)
 - Equivalence Relations
 - Boolean Algebras

4. Embeddings as Substructures

5. Summary and Questions
Remark

Of particular (and natural) interest are the special cases when $\mathcal{L}_1 = \eta$ and $\mathcal{L}_1 = \omega^*$.
Remark
Of particular (and natural) interest are the special cases when $\mathcal{L}_1 = \eta$ and $\mathcal{L}_1 = \omega^*$.

Proposition

The order type η *is computably categorical.*

The standard presentation of the order type ω^* *computably embeds into any computable presentation of the order type* ω^*.
There is a computable non-scattered order type τ_η that is intrinsically hyperarithmetically scattered, i.e., there is a computable order type τ_η into which the rationals embed, but for which the rationals do not hyperarithmetically embed into any hyperarithmetic presentation of τ_η.

Let τ_T be the order type τ_ϵ, where ϵ denotes the empty string.
Embeddings of Linear Orders (Non-Scattered)

Definition

\[
\tau_\sigma = \omega + f(\sigma) + \zeta + \left(\sum_{i \in \omega \cap i \in T} \tau_\sigma \cap i \right)^* + \left(\sum_{i \in \omega \cap i \in T} \tau_\sigma \cap i \right) + \zeta + f(\sigma) + \omega^*.
\]
Embeddings of Linear Orders (Non-Scattered)

Definition

\[\tau_\sigma = \omega + f(\sigma) + \zeta + \left(\sum_{i \in \omega} \tau_\sigma \cap i \right)^* + \left(\sum_{i \in \omega} \tau_\sigma \cap i \right) + \zeta + f(\sigma) + \omega^*. \]

\[\tau_T = \tau_\epsilon = \omega + f(\epsilon) + \zeta + \left(\tau_0 + \tau_1 \right)^* + \left(\tau_0 + \tau_1 \right) + \zeta + f(\epsilon) + \omega^*. \]
Embeddings of Linear Orders (Non-Scattered)

Definition

\[\tau_\sigma = \omega + f(\sigma) + \zeta + \left(\sum_{i \in \omega} \tau_{\sigma \land i} \right)^* + \left(\sum_{i \in \omega} \tau_{\sigma \land i} \right)^* + \zeta + f(\sigma) + \omega^*. \]

\[\tau_T = \tau_\epsilon = \omega + f(\epsilon) + \zeta + \left(\tau_0 + \tau_1 \right)^* + \left(\tau_0 + \tau_1 \right)^* + \zeta + f(\epsilon) + \omega^*. \]

\[\tau_0 = \omega + f(0) + \zeta + \left(\right)^* + \left(\right)^* + \zeta + f(0) + \omega^*. \]
Embeddings of Linear Orders (Non-Scattered)

Definition

\[
\tau_\sigma = \omega + f(\sigma) + \zeta + \left(\sum_{i\in\omega} \tau_\sigma \cap i \right)^* + \left(\sum_{i\in\omega} \tau_\sigma \cap i \right) + \zeta + f(\sigma) + \omega^*.
\]

\[
\tau_T = \tau_\varepsilon = \omega + f(\varepsilon) + \zeta + \left(\tau_0 + \tau_1 \right)^* + \left(\tau_0 + \tau_1 \right) + \zeta + f(\varepsilon) + \omega^*
\]

\[
\tau_0 = \omega + f(0) + \zeta + \left(\right)^* + \left(\right) + \zeta + f(0) + \omega^*
\]

\[
\tau_1 = \omega + f(1) + \zeta + \left(\tau_{10} + \tau_{12} \right)^* + \left(\tau_{10} + \tau_{12} \right) + \zeta + f(1) + \omega^*
\]
Theorem (Kach and Miller [6])

There is a computable non-scattered order type τ_η that is intrinsically hyperarithmetically scattered.

Proof.

Let $T \subseteq \omega^{<\omega}$ be a computable tree with infinite paths but no hyperarithmetic paths. Then τ_T is computable as the definition of τ_σ depended only on knowing whether $\sigma \upharpoonright i \in T$. Also τ_T is non-scattered as T had an infinite path. Finally τ_T is intrinsically hyperarithmetically scattered as a $(\Delta^0_4(\mathcal{L}_T) \oplus \pi)$-computable path in T can be recovered from a hyperarithmetic embedding $\pi : \eta \rightarrow \mathcal{L}_T$. \square
Theorem (Kach and Miller [6])

There is a computable, non-well-ordered order type τ_{ω^*} that is intrinsically computably well-ordered, i.e., there is a computable order type τ_{ω^*} into which the negative integers embed, but for no computable presentation of τ_{ω^*} do the negative integers computably embed.

Definition (Montalbán)

If $F : \omega \to \omega$ is any function, define τ_F to be the order type

$$\cdots + \omega^n \cdot F(n) + \cdots + \omega^2 \cdot F(2) + \omega \cdot F(1) + F(0)$$

Proof (Sketch).

Show that, for carefully chosen $\emptyset^{(\omega)}$-computable functions F, the order type τ_F is not computable but $\tau_{\omega^*} := \omega^\omega + \tau_F$ is computable.
Embeddings of Linear Orders (Non-Well-Ordered) (Continued...)

Proof (Sketch).

Demonstrate that a function $F : \omega \to \omega$ is Δ^0_{2n+1}-limit infimum (equivalently Δ^0_{2n+2}-limitwise monotonic) if and only if the linear order $\omega^\omega + \mathcal{L}_F$ is computable. Note that the forwards direction is difficult; the backwards direction is relatively straightforward.

Also demonstrate the existence of such a function F for which \mathcal{L}_F is not computable by diagonalizing against all linear orders that look “like” \mathcal{L}_F for some function F. Note that higher priority strategies have access to more powerful oracles, and can thus determine the success or failure of lower priority strategies.
Corollary

For each computable ordinal α, there is a computable, non-well-ordered order type that is intrinsically $\emptyset(\alpha)$-computably well-ordered.

Proof.

Relativizing the construction of τ_{ω^*}, build a $\emptyset(\alpha)$-computable presentation that is intrinsically $\emptyset(\alpha)$-computably well-ordered. Then $\omega^\alpha \cdot \tau_{\omega^*}$ is computable and still intrinsically $\emptyset(\alpha)$-computably well-ordered.
Theorem (Harrison)

If a presentation of a computable, non-well-ordered linear order has no hyperarithmetic descending sequence, then it has the form $\omega_1^{CK} (1 + \eta) + \beta$ for some computable ordinal β.

Corollary

There is no computable, non-well-ordered linear order that is intrinsically hyperarithmetically well-ordered.
Theorem (Calvert, Kach, Levin, and Solomon [2])

If \(\mathcal{C} \) is the class of computable ordered fields, then there are structures \(\overline{S}_1 \) and \(\overline{S}_2 \) in \(\mathcal{C} \) such that for no hyperarithmetic presentations \(S_1 \) and \(S_2 \) does \(S_1 \) hyperarithmetically embed into \(S_2 \).
Theorem (Calvert, Kach, Levin, and Solomon [2])

If \(\mathcal{C} \) is the class of computable ordered fields, then there are structures \(\bar{S}_1 \) and \(\bar{S}_2 \) in \(\mathcal{C} \) such that for no hyperarithmetic presentations \(S_1 \) and \(S_2 \) does \(S_1 \) hyperarithmetically embed into \(S_2 \).

Definition

An ordered field \(\mathcal{F} = (F : +, \cdot, 0, 1, <) \) is a field \((F : +, \cdot, 0, 1) \) with an order \(< \) that behaves as it should.
Embeddings of Ordered Fields

Theorem (Calvert, Kach, Levin, and Solomon [2])

If C is the class of computable ordered fields, then there are structures S_1 and S_2 in C such that for no hyperarithmetic presentations S_1 and S_2 does S_1 hyperarithmetically embed into S_2.

Definition

An ordered field $\mathcal{F} = (F : +, \cdot, 0, 1, <)$ is a field $(F : +, \cdot, 0, 1)$ with an order $<$ that behaves as it should.

Definition

If τ is any order type, define $\overline{\mathcal{F}}_{\tau}$ to be the ordered field whose universe is generated by $\mathbb{Q} \cup \{x_i : i \in \tau\}$ and whose order is generated by $x_i^m <_{\overline{\mathcal{F}}_{\tau}} x_j^n$ if $i <_{\tau} j$ as well as $q < x_i$.
Theorem (Calvert, Kach, Levin, and Solomon [2])

If \mathcal{C} is the class of computable ordered fields, then there are structures \overline{S}_1 and \overline{S}_2 in \mathcal{C} such that for no hyperarithmetic presentations S_1 and S_2 does S_1 hyperarithmetically embed into S_2.

Proof.

The ordered fields \overline{F}_η and \overline{F}_τ_η suffice. In order to (somewhat) effectively recover an embedding of η into τ_η from a hyperarithmetic embedding of \overline{F}_η into \overline{F}_τ_η, use Archimedean power classes.
Definition

A tree is a partial order \((T : \preceq)\) with least element such that for all \(x \in T\), the set \(\{y \in T : y \preceq x\}\) is finite and linearly ordered.

Theorem (Binns, Kjos-Hanssen, Lerman, Schmerl, Solomon [1])

There is an infinite computable binary branching tree \(S\) with no isolated paths such that any nontrivial self-embedding computes \(0''\).

Corollary

If \(\mathcal{C}\) is the class of computable trees, then there are structures \(\overline{S}_1\) and \(\overline{S}_2\) in \(\mathcal{C}\) such that for no computable presentations \(S_1\) and \(S_2\) does \(S_1\) computably embed into \(S_2\).
Embeddings of Equivalence Relations

Theorem (Calvert, Kach, Levin, and Solomon [2])

If \(C \) is the class of computable equivalence structures, for all structures \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) in \(C \), there are computable presentations \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) such that \(\mathcal{E}_1 \) computably embeds into \(\mathcal{E}_2 \).

Proof.

If \(\mathcal{E}_2 \) has bounded character, then \(\mathcal{E}_1 \) has bounded character and the result is immediate.

If \(\mathcal{E}_2 \) has unbounded character but only finitely many infinite equivalence classes, a finite injury argument suffices to build computable presentations \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) and a computable embedding between them.

Finally, if \(\mathcal{E}_2 \) has infinitely many infinite equivalence classes, then the addition of countably more infinite equivalence classes provides a place for the image of \(\mathcal{E}_1 \).
Theorem (Calvert, Kach, Levin, and Solomon [2])

If C is the class of computable Boolean algebras, for all structures B_1 and B_2 in C, there are computable presentations B_1 and B_2 such that B_1 computably embeds into B_2.

Proof.

If B_2 is superatomic, then B_1 is superatomic and the result is immediate.

If B_2 is not superatomic, then there is a computable ordinal α such that

$$B_2 \cong B_2 \oplus \text{IntAlg}(\omega^\alpha(1 + \eta))$$

as a consequence of work by Ketonen. There is a nice presentation of the latter into which the countable atomless Boolean algebra (and thus B_1) computably embeds.
Outline

1. Introduction and Motivation

2. Embeddings within Universal Classes
 - Directed Graphs
 - All Universal Structures

3. Embeddings within Non-Universal Classes
 - Linear Orders
 - Ordered Fields
 - Trees (Viewed as Posets)
 - Equivalence Relations
 - Boolean Algebras

4. Embeddings as Substructures

5. Summary and Questions
Remark

Thus far, we have been considering pairs of structures \overline{S}_1 and \overline{S}_2 such that \overline{S}_1 classically embeds into \overline{S}_2. Until now, we have concerned ourselves with attempting to make sure no embedding is computable for any computable presentations S_1 and S_2.

If this is possible, it is natural to ask what further restrictions are necessary before such a phenomena is no longer possible.
Remark

Thus far, we have been considering pairs of structures \overline{S}_1 and \overline{S}_2 such that \overline{S}_1 classically embeds into \overline{S}_2. Until now, we have concerned ourselves with attempting to make sure no embedding is computable for any computable presentations S_1 and S_2.

If this is possible, it is natural to ask what further restrictions are necessary before such a phenomena is no longer possible.

By restricting the computable presentations to fixed computable presentations but allowing the embedding to vary, we arrive at Question #1.
Remark

Thus far, we have been considering pairs of structures \overline{S}_1 and \overline{S}_2 such that \overline{S}_1 classically embeds into \overline{S}_2. Until now, we have concerned ourselves with attempting to make sure *no* embedding is computable for *any* computable presentations S_1 and S_2.

If this is possible, it is natural to ask what further restrictions are necessary before such a phenomena is no longer possible.

By restricting the computable presentations to *fixed* computable presentations but allowing the embedding to vary, we arrive at Question #1.

By restricting the embedding to a *fixed* embedding but allowing the presentations to vary, we arrive at new questions.
More Questions (Cont...)

Question (#3)
If \(\mathcal{C} \) is a class of computable algebraic structures, are there structures \(\overline{S}_1 \) and \(\overline{S}_2 \) in \(\mathcal{C} \) and presentations \(S_1 \subseteq S_2 \) such that for no automorphism \(\pi : S_2 \rightarrow S_2 \) is \(\pi(S_1) \) computably enumerable?

Question (#4)
If \(\mathcal{C} \) is a class of computable algebraic structures, are there structures \(\overline{S}_1 \) and \(\overline{S}_2 \) in \(\mathcal{C} \) and presentations \(S_1 \subseteq S_2 \) such that for no automorphism \(\pi : S_2 \rightarrow S_2 \) is \(\pi(S_1) \) computable?
Remark

Note that a positive answer to Question #2 trivially implies a positive answer to Question #3 and Question #4.

Remark

If a class of computable algebraic structures has a positive answer to Question #3 or Question #4 but a negative answer to Question #2, then it “is not” possible to code into isomorphism types but it “is” possible to code within how an isomorphism type fits inside another isomorphism type in a fixed manner.
Proposition (Calvert, Kach, Levin, and Solomon [2])

If \(\mathcal{C} \) is the class of computable equivalence structures, Boolean algebras, or abelian \(p \)-groups (of length below \(\omega^2 \)), then \(\mathcal{C} \) has a positive answer to Question \#3 and a negative answer to Question \#2.

Proof.

For equivalence structures, let \(\overline{S}_1 \) and \(\overline{S}_2 \) be the equivalence structure with exactly one class of every finite size and no infinite equivalence class. Have \(S_1 \) be the substructure of \(S_2 \) where the class of size \(i \) in \(S_1 \) is a subset of the class of size \(2i \) in \(S_2 \) if \(i \in S \) and a subset of the class of size \(2i + 1 \) otherwise.

For Boolean algebras, let \(\overline{S}_1 \) be \(\text{IntAlg}(\omega) \) and \(\overline{S}_2 \) be \(\text{IntAlg}(\omega^2) \). Have \(S_1 \) be a substructure of \(S_2 \) such that there is an atom of \(S_1 \) bounding exactly \(i \) atoms in \(S_2 \) if and only if \(i \in S \).
Outline

1. Introduction and Motivation
2. Embeddings within Universal Classes
 - Directed Graphs
 - All Universal Structures
3. Embeddings within Non-Universal Classes
 - Linear Orders
 - Ordered Fields
 - Trees (Viewed as Posets)
 - Equivalence Relations
 - Boolean Algebras
4. Embeddings as Substructures
5. Summary and Questions
The (computable) embedding phenomena happens when C is the class of computable
- Directed graphs (or any universal class).
- Linear orders.
- Ordered fields.
- Trees.

The embedding phenomena fails to happen when C is the class of computable
- Equivalence structures.
- Boolean algebras.
Questions

Question

Does Question #2 have a positive answer when C is the class of computable fields? When C is the class of computable abelian p-groups?

Does Question #2 have a positive answer at the hyperarithmetic level when C is the class of computable trees?
Questions

Question

Does Question \#2 have a positive answer when C is the class of computable fields? When C is the class of computable abelian p-groups?

Does Question \#2 have a positive answer at the hyperarithmetic level when C is the class of computable trees?

Question

(Conjecture) Is there a computable, non-scattered linear order that is intrinsically computably well-ordered?
Questions

Question
Does Question \#2 have a positive answer when C is the class of computable fields? When C is the class of computable abelian p-groups?

Does Question \#2 have a positive answer at the hyperarithmetic level when C is the class of computable trees?

Question
(Conjecture) Is there a computable, non-scattered linear order that is intrinsically computably well-ordered?

Question
Is there, for every computable order type τ_1, a computable order type τ_2 such that for no computable presentations \mathcal{L}_1 and \mathcal{L}_2 does \mathcal{L}_1 computably embed into \mathcal{L}_2?
Stephen Binns, Bjorn Kjos-Hanssen, Manuel Lerman, James H. Schmerl, and Reed Solomon.
Self embeddings of computable trees.

Wesley Calvert, Asher M. Kach, Oscar Levin, and D. Reed Solomon.
Embeddings of computable structures.
In preparation.

S. S. Gončarov and A. T. Nurtazin.
Constructive models of complete decidable theories.

Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and Arkadii M. Slinko.
Degree spectra and computable dimensions in algebraic structures.

Denis R. Hirschfeldt and Richard A. Shore.
Combinatorial principles weaker than Ramsey's theorem for pairs.

Asher M. Kach and Joseph S. Miller.
Embeddings of computable linear orders.
In preparation.

Manuel Lerman.
On recursive linear orderings.

Joseph G. Rosenstein.
Linear orderings, volume 98 of *Pure and Applied Mathematics*.