Characterizing the Computable Structures: Boolean Algebras and Linear Orders

Asher M. Kach

University of Wisconsin - Madison

Southern Wisconsin Logic Colloquium
Thesis Defense
1 May 2007
Although I am grateful to many (consult my thesis), I do want to especially recognize and thank both the UW-Madison Math department and Steffen Lempp.

My committee, Jin-Yi Cai, Eric Knuth, Ken Kunen, Steffen Lempp, and Joel Robbin, also deserves special recognition.
Outline

1. General Background and Notation

2. Shuffle Sums

3. Boolean Algebras of Low Depth
A countable structure (with finite signature) is computable if its universe can be identified with ω in such a way as to make the functions and relations on it computable.
Definition

A countable structure (with finite signature) is computable if its universe can be identified with ω in such a way as to make the functions and relations on it computable.

Remark

Here we will be considering two specific classes of structures: Boolean algebras and linear orders. We view a Boolean algebra as a structure in the signature $\mathcal{B} = (B : +, \cdot, -, 0, 1)$ and a linear order as a structure in the signature $\mathcal{L} = (L : \prec)$.
The Feiner Hierarchy

Definition

For \(n \in \omega \), define \(\emptyset(\leq n) \) to be the set

\[
\emptyset(\leq n) = \{ \langle k, m \rangle : m \in \emptyset(k), k \leq n \}.
\]

Definition ([1])

Let \(S \subseteq \omega \) be a set computable in \(\emptyset(\omega) \). Then \(S \) is \((a, b)\) in the Feiner hierarchy if there exists an index \(e \) such that

1. The function \(\varphi_{e}^{\emptyset(\omega)} \) is total and is the characteristic function of \(S \), i.e., \(\varphi_{e}^{\emptyset(\omega)}(n) = \chi_{S}(n) \) for all \(n \).

2. The computations \(\varphi_{e}^{\emptyset(\leq bn+a)}(n) \) and \(\varphi_{e}^{\emptyset(\omega)}(n) \) are identical; in particular, the latter queries \(\emptyset(\omega) \) on no number \(\langle k, m \rangle \) with \(k > bn + a \).
1. General Background and Notation
2. Shuffle Sums
3. Boolean Algebras of Low Depth
Definition

Let $S = \{L_x\}$ be a countable set of linear orders. Then the shuffle sum of S, denoted $\sigma(S)$, is the linear order obtained by partitioning the rationals \mathbb{Q} into $|S|$ many dense sets $\{Q_x\}$ and replacing each point $q \in Q_x$ with the linear order L_x.
Shuffle Sums

Definition

Let \(S = \{ L_x \} \) be a countable set of linear orders. Then the shuffle sum of \(S \), denoted \(\sigma(S) \), is the linear order obtained by partitioning the rationals \(\mathbb{Q} \) into \(|S| \) many dense sets \(\{ Q_x \} \) and replacing each point \(q \in Q_x \) with the linear order \(L_x \).

Definition

If \(\mathcal{L} = (L : \prec) \) is a linear order and \(\mathcal{L}_a = (L_a : \prec_a) \) is a linear order for each \(a \in L \), the lexicographic sum of \(\mathcal{L} \) and \(\{ \mathcal{L}_a \}_{a \in L} \) is the linear order with universe \(\{(a, b) : a \in L, b \in L_a\} \) under the lexicographic order induced by \(\prec \) and \(\prec_a \).

Definition

The shuffle sum of a set \(S = \{ L_x \}_{x \in \omega} \) is the linear order \(\sum_{a \in \mathbb{Q}} L_a \), where \(L_a \) is the linear order \(L_x \) if \(a \in Q_x \).
A set $S \subseteq \omega + 1$ is a limit infimum set, written \textsc{LimInf} set, if there is a total computable function $g(x, s) : \omega \times \omega \rightarrow \omega$ such that the function

$$f(x) = \liminf_s g(x, s)$$

enumerates S. Here we use the convention that $\liminf_s g(x, s) = \omega$ if $\lim_s g(x, s) = \infty$.
Definition ([2])

A set $S \subseteq \omega + 1$ is a limitwise monotonic set relative to $(0')$, written $\text{LimMon}(0')$ set, if there is a total $(0')$-computable function $\tilde{g}(x, t) : \omega \times \omega \rightarrow \omega$ satisfying

$$\tilde{g}(x, t) \leq \tilde{g}(x, t + 1) \quad \text{for all } x \text{ and } t$$

such that the function

$$\tilde{f}(x) = \lim_t \tilde{g}(x, t).$$

enumerates S. Again we use the convention that $\lim_t \tilde{g}(x, t) = \omega$ if $\lim_t \tilde{g}(x, t) = \infty$.
Theorem (K)

For sets $S \subseteq \omega + 1$, the following are equivalent:

1. The shuffle sum $\sigma(S)$ is computable.
2. The set S is a LIM INF set.
3. The set S is a LIM MON (0') set.
Proof of (1) implies (2)

Proof (Sketch).

From a computable presentation of $\sigma(S)$, define a computable function $g(x, s)$ as the “sum” of the number of points to the left of x in the block of x, one, and the number of points to the right of x in the block of x.

As the block of x is not computable, we guess that it extends from the point last enumerated to the left of x to the point last enumerated to the right of x (exclusive).

Verify that this approximation works, separating the case when the block size of x is finite from when the block size is infinite.
Proof (Sketch).

From a function g witnessing that S is a LIMINF set, build infinitely many copies of the linear order $g(x, s)$ at all rationals in the set Q_x.

When the value of $g(x, s)$ increases, add additional points. When the value of $g(x, s)$ decreases, dissassociate the extra points from the rational in $q \in Q_x$.

Prioritize the disassociated points so that they eventually become permanently associated to some other rational $q' \in Q_{x'}$.
Proof of (2) if and only if (3)

Proof (Sketch).

From a computable function $g(r, s)$ witnessing that S is a LIM set, define a $(0')$-computable function $\tilde{g}(r, t)$ witnessing that S is a LIM$(0')$ set.

Conversely, from a $(0')$-computable function $\tilde{g}(r, t)$ witnessing that S is a LIM$(0')$ set, define a computable function $g(r, s)$ witnessing that S is a LIM set.
Proof (Sketch).

From a computable function $g(r, s)$ witnessing that S is a \textsc{Liminf} set, define a $(0')$-computable function $\tilde{g}(r, t)$ witnessing that S is a \textsc{Limmon} $(0')$ set.
Proof of (2) if and only if (3)

Proof (Sketch).

From a computable function $g(r, s)$ witnessing that S is a LIMINF set, define a $(0')$-computable function $\tilde{g}(r, t)$ witnessing that S is a LIMMON (0') set.

Conversely, from a $(0')$-computable function $\tilde{g}(r, t)$ witnessing that S is a LIMMON (0') set, define a computable function $g(r, s)$ witnessing that S is a LIMINF set.
1. General Background and Notation

2. Shuffle Sums

3. Boolean Algebras of Low Depth
Definition ([5])

A measure σ is a map from the countable atomless Boolean algebra \mathcal{F} to the countable ordinals satisfying $\sigma(x + y) = \max\{\sigma(x), \sigma(y)\}$.
A measure σ is a map from the countable atomless Boolean algebra \mathcal{F} to the countable ordinals satisfying $\sigma(x + y) = \max\{\sigma(x), \sigma(y)\}$.

By associating the countable atomless Boolean algebra with finite unions of cones of $2^{<\omega}$, a measure can be viewed as a map $\sigma : 2^{<\omega} \to \omega_1$ satisfying $\sigma(\tau) = \max\{\sigma(\tau \upharpoonright 0), \sigma(\tau \upharpoonright 1)\}$. Under this interpretation, a measure can be thought of as a labelled binary tree.
If \(\sigma : \mathcal{F} \rightarrow \omega_1 \) is a measure, define maps \(\Delta^\alpha \sigma \) with domain \(\mathcal{F} \) for \(\alpha < \omega_1 \) recursively by setting \(\Delta^0 \sigma = \sigma \),

\[
\Delta^{\alpha+1} \sigma(x) = \{(\Delta^\alpha \sigma(x_1), \ldots, \Delta^\alpha \sigma(x_n)) : x = x_1 \oplus \cdots \oplus x_n\},
\]

and \(\Delta^\gamma \sigma(x) \) as the inverse limit of \(\Delta^\beta \sigma(x) \) for \(\beta < \gamma \).

The set \(\Delta^\alpha \sigma(1_\mathcal{B}) \) is the \(\alpha \)th derivative of \(\mathcal{B}_\sigma \).
Theorem (K)

For each set $S \subseteq \omega_1$ satisfying $|S| = 1$, there is exactly one depth zero Boolean algebra with range S, namely $B_u(S) = B_v(S)$.

For each set $S \subseteq \omega_1$ with greatest element satisfying $|S| > 1$, there are exactly two depth zero Boolean algebras with range S, namely $B_u(S)$ and $B_v(S)$.
Theorem (K)

For each set $S \subseteq \omega_1$ satisfying $|S| = 1$, there is exactly one depth zero Boolean algebra with range S, namely $B_u(S) = B_v(S)$.

For each set $S \subseteq \omega_1$ with greatest element satisfying $|S| > 1$, there are exactly two depth zero Boolean algebras with range S, namely $B_u(S)$ and $B_v(S)$.

Proof (Sketch).

Show the existence of at least two, then of at most two. For the former, define the Boolean algebras $B_{u(\alpha+1)}$ and $B_{v(\alpha+1)}$ by induction on α. For the latter, either use pseudo-indecomposability and primitiveness or appeal directly to the depth zero definition.
Proposition (K)

There are continuum many depth one, rank ω Boolean algebras with range $\omega + 1$.
Proposition (K)

There are continuum many depth one, rank \(\omega \) Boolean algebras with range \(\omega + 1 \).

Proof (Sketch).

Code subsets of the positive integers into a Boolean algebra \(B^S \). Have \(\sigma_u(\{0,n\}) \) be a subalgebra of \(B^S \) if and only if \(n \in S \); have \(\sigma_v(\{0,n\}) \) be a subalgebra of \(B^S \) if and only if \(n \notin S \).
The measure σ^S when $S = \{1, 3, 5, \ldots \}$
There are continuum many depth ω, rank one measures.

Proof (Sketch).
Define a map π from the space of uniform Boolean algebras to the space of uniform rank one Boolean algebras. The algebra
$\pi(B)$
is the algebra generated by the (any) characteristic function of a subset of the rationals whose clopen algebra is B.
Argue that $\pi(B_u(S))$ and $\pi(B_v(S))$ are (at most) depth ω for sets $S \subseteq \omega + 1$.
Proposition (K)

There are continuum many depth ω, rank one measures.

Proof (Sketch).

Define a map π from the space of uniform Boolean algebras to the space of uniform rank one Boolean algebras. The algebra $\pi(B)$ is the algebra generated by the (any) characteristic function of a subset of the rationals whose clopen algebra is B.

Argue that $\pi(B_u(S))$ and $\pi(B_v(S))$ are (at most) depth ω for sets $S \subseteq \omega + 1$.
The measure $\pi(\sigma_u(2))$
Proposition (K)

If σ is a depth zero measure of rank at most $\lambda < \omega_1^{CK}$, then σ is computable (i.e., there is a computable measure σ' such that $B_\sigma = B_{\sigma'}$) if and only if $\Delta \sigma(1_B)$ is computably enumerable.

Moreover, from an index for either σ or $\Delta \sigma(1_B)$, an index for the other can be given uniformly.
Effective Boolean Algebras: The Main Results

Proposition (K)

If σ is a depth zero measure of rank at most $\lambda < \omega_1^{\text{CK}}$, then σ is computable (i.e., there is a computable measure σ' such that $\mathcal{B}_\sigma = \mathcal{B}_{\sigma'}$) if and only if $\Delta\sigma(1_\mathcal{B})$ is computably enumerable.

Moreover, from an index for either σ or $\Delta\sigma(1_\mathcal{B})$, an index for the other can be given uniformly.

Theorem (K)

Let $S \subseteq \omega + 1$ be a set with greatest element. Then the following are equivalent:

1. The Boolean algebra $\mathcal{B}_{u(S)}$ is computable.
2. The Boolean algebra $\mathcal{B}_{v(S)}$ is computable.
3. The set S is $(2, 2)$ in the Feiner hierarchy.
Proof of (1), (2) implies (3)

Proof (Sketch).

Uniformly in \(n \), define \(\Sigma_{2n+3}^0 \) sentences \(\varphi_n \) satisfying

\[
\mathcal{B}_u(S), \mathcal{B}_v(S) \models \varphi_n \quad \text{if and only if} \quad n \in S.
\]

When defining these formulas, make use of the fact that there are formulas (uniform in \(\alpha \)) of complexity \(\Pi_{2\alpha+1}^0 \) identifying whether an element is an \(\alpha \)-atom.
Proof of (3) implies (1), (2)

Proof (Sketch).

Assume without loss of generality that S is infinite.

Construct $\mathcal{B}_u(S)$ ($\mathcal{B}_v(S)$, respectively) from an index e witnessing that S is $(2, 2)$ in the Feiner hierarchy. Do so by building a linear order

$$\mathcal{L} = \sum_{\tau \in 2^{<\omega}} \mathcal{L}_\tau$$

and taking its interval algebra.

The linear order \mathcal{L}_τ depends on S and the value of $\sigma_{u(\omega+1)}(\tau)$ ($\sigma_{v(\omega+1)}(\tau)$, respectively). It is built by iterating the following technical lemma.
Technical Lemma (Statement)

Lemma (K)

Uniformly in

- a Δ^0_3 index for the atomic diagram $D(A)$ of a linear order $A = (A : \prec) = (\{a_0, a_1, \ldots\} : \prec)$ with distinguished first element
- and an index for a Σ^0_3 predicate $\exists n \forall u \exists v R(n, u, v)$,

there is an index for a Δ^0_1 linear order B such that $B \equiv \sum_{a \in A} L_a$, where $L_{a_n} = 1 + \eta + \omega$ if $\forall u \exists v R(n, u, v)$ and $L_{a_n} = \omega$ otherwise.
Proof (Sketch).

An infinite injury argument using work of Thurber as an outline. Approximate the atomic diagram of \mathcal{A} using the Limit Lemma twice, imposing (without loss of uniformity) constraints on the approximating functions.

Introduce chronological priorities and build each block as the sum of a singleton segment, a dense segment, and a discrete segment. As the approximations change, attach and detach blocks appropriately.
Bibliography

Feiner, Lawrence.
Hierarchies of Boolean algebras.

Hisamiev, N.G.
Criterion for constructivizability of a direct sum of cyclic p-groups

Kach, Asher.
Computable shuffle sums of ordinals.
Archives of Mathematical Logic, accepted.

Kach, Asher.
Boolean algebras of low Ketonen depth.
In preparation.

Ketonen, Jussi.
The structure of countable Boolean algebras.

Pierce, R.S.
Countable Boolean algebras.