Outline

1 Background

2 Index Set Complexities

3 Decidability Hypotheses

4 Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical

5 Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical

6 Arithmetically Categorical But Not Δ^0_n-Categorical

7 Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
A computable structure \mathcal{M} is \emph{computably categorical} if between any two computable presentations A and B of \mathcal{M} there is a computable isomorphism $\pi : A \cong B$.

A computable structure \mathcal{M} is \emph{relatively computably categorical} if between any two arbitrary presentations A and B of \mathcal{M} there is a $(A \oplus B)$-computable isomorphism $\pi : A \cong B$.

Question: How and why are these notions the same? Different?

Question: Are there structural properties that are common to exactly these structures?
Definition
A computable structure \mathcal{M} is *computably categorical* if between any two computable presentations A and B of \mathcal{M} there is a computable isomorphism $\pi : A \cong B$.

Definition
A computable structure \mathcal{M} is *relatively computably categorical* if between any two arbitrary presentations A and B of \mathcal{M} there is a $(A \oplus B)$-computable isomorphism $\pi : A \cong B$.

Question
How and why are these notions the same? Different?

Question
Are there structural properties that are common to exactly these structures?
Definition

A computable structure \mathcal{M} is Δ^0_α-categorical if between any two computable presentations \mathcal{A} and \mathcal{B} of \mathcal{M} there is a Δ^0_α-computable isomorphism $\pi : \mathcal{A} \cong \mathcal{B}$.

Definition

A computable structure \mathcal{M} is relatively Δ^0_α-categorical if between any two arbitrary presentations \mathcal{A} and \mathcal{B} of \mathcal{M} there is a $(\Delta^0_\alpha(\mathcal{A}) \oplus \Delta^0_\alpha(\mathcal{B}))$-computable isomorphism $\pi : \mathcal{A} \cong \mathcal{B}$.
Theorem (Goncharov 1975; Ash 1987)

For a computable structure M, the following are equivalent:

1. The structure M is relatively Δ^0_α-categorical.
2. The orbits are effectively isolated by Σ^c_α-formulas: There is a c.e. family Φ of Σ^c_α-formulas (over some fixed parameter c) such that each $a \in M$ satisfies some $\phi \in \Phi$, and if $a, b \in M$ both satisfy the same $\phi \in \Phi$ then they are automorphic.

3. The Σ^c_α-types are effectively isolated by Σ^c_α-formulas: There is a c.e. family Φ of Σ^c_α-formulas (over some fixed parameter c) such that each $a \in M$ satisfies some $\phi \in \Phi$, and if $a, b \in M$ both satisfy the same $\phi \in \Phi$ then their Σ^c_α-types coincide.
Theorem (Goncharov 1975; Ash 1987)

For a computable structure \(\mathcal{M} \), the following are equivalent:

- The structure \(\mathcal{M} \) is relatively \(\Delta^0_\alpha \)-categorical.
- The orbits are effectively isolated by \(\Sigma^c_\alpha \)-formulas: There is a c.e. family \(\Phi \) of \(\Sigma^c_\alpha \)-formulas (over some fixed parameter \(\bar{c} \)) such that each \(\bar{a} \in \mathcal{M} \) satisfies some \(\varphi \in \Phi \), and if \(\bar{a}, \bar{b} \in \mathcal{M} \) both satisfy the same \(\varphi \in \Phi \) then they are automorphic.
- The \(\Sigma^c_\alpha \)-types are effectively isolated by \(\Sigma^c_\alpha \)-formulas: There is a c.e. family \(\Phi \) of \(\Sigma^c_\alpha \)-formulas (over some fixed parameter \(\bar{c} \)) such that each \(\bar{a} \in \mathcal{M} \) satisfies some \(\varphi \in \Phi \), and if \(\bar{a}, \bar{b} \in \mathcal{M} \) both satisfy the same \(\varphi \in \Phi \) then their \(\Sigma^c_\alpha \)-types coincide.
Definition (Kudinov 1996)

A computable structure \mathcal{M} is *uniformly computably categorical* if there is a functional Φ such that

$$x \mapsto \Phi(\text{AtDiag}(\mathcal{M}_i), \text{AtDiag}(\mathcal{M}_j); x)$$

is a computable isomorphism between \mathcal{M}_i and \mathcal{M}_j whenever \mathcal{M}_i and \mathcal{M}_j are computable presentations of \mathcal{M}.

A computable structure \mathcal{M} is *uniformly computably categorical with parameters* if there is a parameter $\bar{c} \in \mathcal{M}$ such that $(\mathcal{M}; \bar{c})$ is uniformly computably categorical.
Theorem (Ash, Knight, and Slaman 1993; Downey, Hirschfeldt, and Khoussainov 2003)

A structure \mathcal{M} is relatively computably categorical (with parameters) if and only if it is uniformly computably categorical (with parameters).
The Connection...

Theorem (Ash, Knight, and Slaman 1993; Downey, Hirschfeldt, and Khoussainov 2003)

A structure \mathcal{M} is relatively computably categorical (with parameters) if and only if it is uniformly computably categorical (with parameters).

Proof (\Longleftrightarrow).

Fix Φ witnessing relative computable categoricity. Given computable presentations \mathcal{A} and \mathcal{B} of \mathcal{M}, define $\pi : \mathcal{A} \cong \mathcal{B}$ via a back-and-forth construction.

For the forth direction, to define $\pi(a)$, search for $\varphi \in \Phi$ such that $\mathcal{A} \models \varphi(x_0, x_1, \ldots, x_i, a)$, where x_0, x_1, \ldots, x_i are the elements already in the domain of π.

Search for $b \in \mathcal{B}$ such that $\mathcal{B} \models \varphi(\pi(x_0), \pi(x_1), \ldots, \pi(x_i), b)$. Define $\pi(a) = b$.
The Connection...

Theorem (Ash, Knight, and Slaman 1993; Downey, Hirschfeldt, and Khoussainov 2003)

A structure \mathcal{M} is relatively computably categorical (with parameters) if and only if it is uniformly computably categorical (with parameters).

Proof (\iff).

Fix computable presentations \mathcal{A} and \mathcal{B} of \mathcal{M}. Build family Φ.

Given $\bar{a} \in A$, let s be least so that

$$\bar{a} \subseteq \mathcal{A} \upharpoonright s \quad \text{and} \quad \Psi(\text{AtDiag}(\mathcal{A}) \upharpoonright s, \text{AtDiag}(\mathcal{B}) \upharpoonright s; x).$$

Let $\delta(\bar{a}, \bar{b})$ be the atomic diagram given by $\mathcal{A} \upharpoonright s$.

Define $\varphi_{\bar{a}}(\bar{x})$ to be the formula $\varphi_{\bar{a}}(\bar{x}) := (\exists y) [\varphi(\bar{x}, y)]$.

Asher M. Kach
Categoricity Versus Relative Categoricity
5 September 2012 7 / 45
Outline

1. Background

2. Index Set Complexities

3. Decidability Hypotheses

4. Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical

5. Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical

6. Arithmetically Categorical But Not Δ^0_n-Categorical

7. Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
Corollary (Downey, Kach, Lempp, and Turetsky)

The index set \{ e : M_e is relatively computably categorical \} of the relatively computably categorical structures is Σ^0_3-complete.
Corollary (Downey, Kach, Lempp, and Turetsky)

The index set \(\{ e : \mathcal{M}_e \text{ is relatively computably categorical} \} \) of the relatively computably categorical structures is \(\Sigma^0_3 \)-complete.

Proof.

For \(\Sigma^0_3 \): Analyze Goncharov 1975: By the third condition, relatively computably categorical if and only if

\[
(\exists \Phi) \left[(\forall a)(\exists \varphi \in \Phi) \right. \left[\mathcal{M}_e \models \varphi(a) \right] \text{ and } (\forall a)(\forall b)(\forall \psi \in \Sigma^0_1)(\forall \theta \in \Sigma^0_1) \left[(\mathcal{M}_e \models \psi(a) \land \psi(b) \text{ and } \psi \in \Phi) \rightarrow \mathcal{M}_e \models \theta(a) \land \theta(b) \right].
\]
Corollary (Downey, Kach, Lempp, and Turetsky)

The index set \{ e : M_e is relatively computably categorical \} of the relatively computably categorical structures is \(\Sigma^0_3 \)-complete.

Proof.

For \(\Sigma^0_3 \): Analyze Goncharov 1975: By the third condition, relatively computably categorical if and only if

\[
(\exists \Phi) \left[(\forall a)(\exists \varphi \in \Phi) \left[M_e \models \varphi(a) \right] \text{ and } (\forall a)(\forall b)(\forall \psi \in \Sigma^0_1)(\forall \theta \in \Sigma^0_1) \left[M_e \models \psi(a) \land \psi(b) \land \psi \in \Phi \rightarrow M_e \models \theta(a) \land \theta(b) \right] \right].
\]

For Hardness: Exploit, for example, Downey and Montalbán 2008: A \(\mathbb{Z} \)-vector space is relatively computably categorical if and only if it is finite dimensional.
Index Set Complexity...

Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

The index set \(\{ e : M_e \text{ is computably categorical} \} \) of the computably categorical structures is \(\Pi^1_1 \)-complete.

Proof. For \(\Pi^1_1 \): Note that \(M_e \) is computably categorical if and only if

\[
\forall i \left(\exists f \left[f : M_e \cong M_i \right] \right) \Rightarrow \exists k \left[\Phi_k : M_e \cong M_i \right].
\]

For Hardness: Not enough space in the margins.

Remark In a strong sense, this says there is no simple structural property whose presence or absence is equivalent to computable categoricity.
Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

The index set \(\{ e : \mathcal{M}_e \text{ is computably categorical} \} \) of the computably categorical structures is \(\Pi^1_1 \)-complete.

Proof.

For \(\Pi^1_1 \): Note that \(\mathcal{M}_e \) is computably categorical if and only if

\[
(\forall i) \ [(\exists f) \ [f : \mathcal{M}_e \cong \mathcal{M}_i]] \implies (\exists k) \ [\Phi_k : \mathcal{M}_e \cong \mathcal{M}_i] .
\]

For Hardness: Not enough space in the margins.
Index Set Complexity...

Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

The index set \(\{ e : \mathcal{M}_e \text{ is computably categorical} \} \) of the computably categorical structures is \(\Pi^1_1 \)-complete.

Proof.

For \(\Pi^1_1 \): Note that \(\mathcal{M}_e \) is computably categorical if and only if

\[
(\forall i) \left((\exists f) \left[f : \mathcal{M}_e \cong \mathcal{M}_i \right] \implies (\exists k) \left[\Phi_k : \mathcal{M}_e \cong \mathcal{M}_i \right] \right).
\]

For Hardness: Not enough space in the margins.

Remark

In a strong sense, this says there is no simple structural property whose presence or absence is equivalent to computable categoricity.
Theorem (Downey, Kach, Lempp, Melnikov, and Turetsky)

There is a relatively computably categorical group G whose index set
$\{ e : G \cong G_e \}$ is Σ^0_3-complete.

Proof.

For Σ^0_3:
Fix a (relatively) computably categorical structure M. Then $i \in \{ e : M \cong M_e \}$ if and only if there is a computable isomorphism total (Π^0_2), injective (Π^0_1), surjective (Π^0_2), and atomic diagram preserving (Π^0_1) map between M and M_i.
Theorem (Downey, Kach, Lempp, Melnikov, and Turetsky)

There is a relatively computably categorical group G whose index set
$\{ e : G \cong G_e \}$ is Σ_3^0-complete.

Proof.

For Σ_3^0: Fix a (relatively) computably categorical structure M. Then
$i \in \{ e : M \cong M_e \}$ if and only if there is a computable isomorphism
- total (Π_2^0),
- injective (Π_1^0),
- surjective (Π_2^0), and
- atomic diagram preserving (Π_1^0) map
between M and M_i.
Theorem (Downey, Kach, Lempp, Melnikov, and Turetsky)

There is a relatively computably categorical group \mathcal{G} whose index set
\[\{ e : \mathcal{G} \cong \mathcal{G}_e \} \text{ is } \Sigma^0_3 \text{-complete.} \]

Proof.

For Hardness: Let \mathcal{G} be the subgroup of $(\mathbb{Q}; +)$ generated by the set
\[\left\{ \frac{1}{p} : p \text{ a prime} \right\}. \]

Then \mathcal{G} is relatively computably categorical because any isomorphism is dictated by the image of any element.

Given a Σ^0_3 set S with $n \in S$ if and only if $(\exists u)(\exists \infty v) [R(n, u, v)]$, build
\[\{ \mathcal{G}_n \}_{n \in \mathbb{N}} \] so that $\mathcal{G} \cong \mathcal{G}_n$ if and only if $n \in S$. For each n, maintain markers on the prime numbers. When $R(n, u, v)$, kick the uth marker, enumerating $1/p$ into \mathcal{G}_n, where p was the prime covered by the uth marker.
Outline

1. Background

2. Index Set Complexities

3. Decidability Hypotheses

4. Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical

5. Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical

6. Arithmetically Categorical But Not Δ^0_n-Categorical

7. Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
Theorem (Goncharov 1975)

Let \mathcal{M} be 2-decidable. If \mathcal{M} is computably categorical, then \mathcal{M} is relatively computably categorical.
The 2-Decidable Hypothesis...

Theorem (Goncharov 1975)

Let \mathcal{M} be 2-decidable. If \mathcal{M} is computably categorical, then \mathcal{M} is relatively computably categorical.

Theorem (Kudinov 1996)

This is optimal: There is a 1-decidable structure \mathcal{M} that is computably categorical but not relatively computably categorical.
Theorem (Downey, Kach, Lempp, and Turetsky)

Let \mathcal{M} be 1-decidable. If \mathcal{M} is computably categorical, then \mathcal{M} is relatively Δ^0_2 categorical.
Theorem (Downey, Kach, Lempp, and Turetsky)

Let \mathcal{M} be 1-decidable. If \mathcal{M} is computably categorical, then \mathcal{M} is relatively Δ^0_2 categorical.

Lemma

There is a tuple \bar{p} such that distinct Σ_1-types over \bar{p} are incomparable under inclusion and $\Sigma_1 - \text{tp}_{\bar{p}}(\bar{a}) = \Sigma_1 - \text{tp}_{\bar{p}}(\bar{a}')$ implies $\Sigma^c_2 - \text{tp}_{\bar{p}}(\bar{a}) = \Sigma^c_2 - \text{tp}_{\bar{p}}(\bar{a}')$.

Proof of Theorem.

Fix \bar{p}. For $a \in M$, define $\chi_a(x) := \bigwedge_{\psi \in \Pi^1_1(\bar{p})| M} \psi(a) \psi(x)$.

The 1-Decidable Hypothesis...

Theorem (Downey, Kach, Lempp, and Turetsky)

Let \mathcal{M} be 1-decidable. If \mathcal{M} is computably categorical, then \mathcal{M} is relatively Δ^0_2 categorical.

Lemma

There is a tuple \bar{p} such that distinct Σ_1-types over \bar{p} are incomparable under inclusion and $\Sigma_1 - tp_{\bar{p}}(\bar{a}) = \Sigma_1 - tp_{\bar{p}}(\bar{a'})$ implies

$\Sigma^c_2 - tp_{\bar{p}}(\bar{a}) = \Sigma^c_2 - tp_{\bar{p}}(\bar{a'})$.

Proof of Theorem.

Fix \bar{p}. For $a \in M$, define

$$
\chi_{\bar{a}}(x) := \bigwedge_{\psi \in \Pi^1_1(\bar{p})} \psi(x).
$$

$$
\psi \in \Pi^1_1(\bar{p})
\mathcal{M} \models \psi(\bar{a})
$$
1. Background
2. Index Set Complexities
3. Decidability Hypotheses
4. Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical
5. Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical
6. Arithmetically Categorical But Not Δ^0_n-Categorical
7. Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
Theorem (Goncharov 1977)

There is a computable structure that is computably categorical but not relatively computably categorical.
Theorem (Goncharov 1977)

There is a computable structure that is computably categorical but not relatively computably categorical.

Theorem (White 2003)

The index set complexity of the computably categorical structures is Π^0_4-hard.

If the computably categorical structures and the relatively computably categorical structures coincided, then their index set complexity would coincide. This is not the case.
An Undirected Graph Example...

Theorem (Goncharov 1977)

There is a computable graph G that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n+1$, where n is large.
- Wait for $\phi \in \Phi_0$ with $A|_v = \phi(v)$.
- Add loop of size $3n+2$ to v.
- Wait for M_0 to show the loop of size $3n+2$ on v.
- Restart the strategy assuming $A \not\sim M_0$.
- Add loop of size $3n+1$ to u.

Note that Φ_0 cannot isolate the orbits of tuples (singletons) as now $A|_u = \phi(u) \land \phi(v)$ but u and v are not automorphic.
An Undirected Graph Example...

Theorem (Goncharov 1977)

There is a computable graph G that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

1. Build a vertex u with loop of size 3^n and a vertex v with loops of size 3^n and $3^n + 1$, where n is large.
2. Wait for $\phi \in \Phi_0$ with $A|_u = \phi(v)$.
3. Add loop of size $3^n + 2$ to v.
4. Wait for M_0 to show the loop of size $3^n + 2$ on v.
5. Restart the strategy assuming $A \not\sim M_0$.
6. Add loop of size $3^n + 1$ to u.

Note that Φ_0 cannot isolate the orbits of tuples (singletons) as now $A|_u = \phi(u) \land \phi(v)$ but u and v are not automorphic.
Theorem (Goncharov 1977)

There is a computable graph G that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
Theorem (Goncharov 1977)

There is a computable graph \(G \) that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family \(\Phi_0 \):

- Build a vertex \(u \) with loop of size \(3n \) and a vertex \(v \) with loops of size \(3n \) and \(3n + 1 \), where \(n \) is large.
- Wait for \(\varphi \in \Phi_0 \) with \(A \models \varphi(v) \).

Note that \(\Phi_0 \) cannot isolate the orbits of tuples (singletons) as now \(A \models \varphi(u) \land \varphi(v) \) but \(u \) and \(v \) are not automorphic.
An Undirected Graph Example...

Theorem (Goncharov 1977)

There is a computable graph \mathcal{G} that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_0$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
Theorem (Goncharov 1977)

There is a computable graph \mathcal{G} that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_0$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
- Wait for \mathcal{M}_0 to show the loop of size $3n + 2$ on v.
 Restart the strategy assuming $A \not\equiv \mathcal{M}_0$.

Asher M. Kach
Categoricity Versus Relative Categoricity
5 September 2012 17 / 45
Theorem (Goncharov 1977)

There is a computable graph G that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_0$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
- Wait for M_0 to show the loop of size $3n + 2$ on v.
- Restart the strategy assuming $A \not\cong M_0$.
- Add loop of size $3n + 1$ to u.
An Undirected Graph Example...

Theorem (Goncharov 1977)

There is a computable graph G that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_0$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
- Wait for M_0 to show the loop of size $3n + 2$ on v.
 Restart the strategy assuming $A \not\equiv M_0$.
- Add loop of size $3n + 1$ to u.

Note that Φ_0 cannot isolate the orbits of tuples (singletons) as now $A \models \varphi(u) \land \varphi(v)$ but u and v are not automorphic.
An Undirected Graph Example...

Theorem (Goncharov 1977)

There is a computable graph \mathcal{G} that is computably categorical but not relatively computably categorical.

Proof.

In order to defeat the family Φ_0:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_0$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
- Wait for M_0 to show the loop of size $3n + 2$ on v.
 - Restart the strategy assuming $A \not\cong M_0$.
- Add loop of size $3n + 1$ to u.

Note that Φ_0 cannot isolate the orbits of tuples (singletons) as now $A \models \varphi(u) \land \varphi(v)$ but u and v are not automorphic.
Proof (Continued...)

In order to defeat the family Φ_1:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_1$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
- Wait for M_0 and M_1 to show the loop of size $3n + 2$ on v.

 Restart the strategy assuming $A \not\sim M_0$ and $A \not\sim M_1$.

- Add loop of size $3n + 1$ to u.

Note that Φ_1 cannot isolate the orbits of tuples (singletons) as now $A \models \varphi(u) \land \varphi(v)$ but u and v are not automorphic.
Proof (Continued...)

In order to defeat the family \(\Phi_1 \):

- Build a vertex \(u \) with loop of size \(3n \) and a vertex \(v \) with loops of size \(3n \) and \(3n + 1 \), where \(n \) is large.
- Wait for \(\varphi \in \Phi_1 \) with \(\mathcal{A} \models \varphi(v) \).
- Add loop of size \(3n + 2 \) to \(v \).
- Wait for \(\mathcal{M}_0 \) and \(\mathcal{M}_1 \) to show the loop of size \(3n + 2 \) on \(v \).
- Restart the strategy assuming \(\mathcal{A} \not\models \mathcal{M}_0 \) and \(\mathcal{A} \not\models \mathcal{M}_1 \).
- Add loop of size \(3n + 1 \) to \(u \).

Note that \(\Phi_1 \) cannot isolate the orbits of tuples (singletons) as now \(\mathcal{A} \models \varphi(u) \land \varphi(v) \) but \(u \) and \(v \) are not automorphic.
Handling Higher Priority Strategies...

Proof (Continued...)

In order to defeat the family Φ_1:

- Build a vertex u with loop of size $3n$ and a vertex v with loops of size $3n$ and $3n + 1$, where n is large.
- Wait for $\varphi \in \Phi_1$ with $A \models \varphi(v)$.
- Add loop of size $3n + 2$ to v.
- Wait for M_0 and M_1 to show the loop of size $3n + 2$ on v.
- Restart the strategy assuming $A \not\equiv M_0$ and $A \not\equiv M_1$.
- Add loop of size $3n + 1$ to u.

Note that Φ_1 cannot isolate the orbits of tuples (singletons) as now $A \models \varphi(u) \land \varphi(v)$ but u and v are not automorphic.
Assuming $\mathcal{A} \cong \mathcal{M}_i$, in order to build a computable isomorphism $\pi : \mathcal{A} \cong \mathcal{M}_i$, nonuniformly fix an isomorphism π on the part of \mathcal{A} controlled by higher priority strategies. Importantly, this nonuniform part is finite.
Assuming $\mathcal{A} \cong \mathcal{M}_i$, in order to build a computable isomorphism $\pi : \mathcal{A} \cong \mathcal{M}_i$, nonuniformly fix an isomorphism π on the part of \mathcal{A} controlled by higher priority strategies. Importantly, this nonuniform part is finite.

For the remainder of the structure, be intelligent when defining the embedding π. Importantly, any embedding is necessarily an isomorphism.
Proof (Continued...)

Assuming $\mathcal{A} \cong \mathcal{M}_i$, in order to build a computable isomorphism $\pi : \mathcal{A} \cong \mathcal{M}_i$, nonuniformly fix an isomorphism π on the part of \mathcal{A} controlled by higher priority strategies. Importantly, this nonuniform part is finite.

For the remainder of the structure, be intelligent when defining the embedding π. Importantly, any embedding is necessarily an isomorphism.

Remark

Note that there is a (noncomputably enumerable) family Φ of Σ^0_1 formulas. Hence, the failure of relative computable categoricity is for effectiveness reasons rather than classical reasons.
Outline

1. Background
2. Index Set Complexities
3. Decidability Hypotheses
4. Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical
5. Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical
6. Arithmetically Categorical But Not Δ^0_n-Categorical
7. Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
Theorem (Calvert, Cenzer, Harizanov, and Morozov 2006)

An equivalence structure is computably categorical if and only if it is relatively computably categorical if and only if there are only finitely many classes excepting classes of some fixed cardinality.

For $\alpha \geq 3$, every computable equivalence structure is relatively Δ^0_α-categorical.
Theorem (Calvert, Cenzer, Harizanov, and Morozov 2006)

An equivalence structure is computably categorical if and only if it is relatively computably categorical if and only if there are only finitely many classes excepting classes of some fixed cardinality.

For $\alpha \geq 3$, every computable equivalence structure is relatively Δ^0_α-categorical.

Theorem (Kach and Turetsky 2009)

There is an equivalence structure that is Δ^0_2-categorical but not relatively Δ^0_2-categorical.
Useful Lemmas...

Lemma (Calvert, Cenzer, Harizanov, and Morozov 2006)

Let \mathcal{E} be an equivalence structure having unbounded character (i.e., having finite classes of unbounded size) and with infinitely many infinite classes. Then \mathcal{E} is not relatively Δ^0_2-categorical.
Lemma (Calvert, Cenzer, Harizanov, and Morozov 2006)

Let \mathcal{E} be an equivalence structure having unbounded character (i.e., having finite classes of unbounded size) and with infinitely many infinite classes. Then \mathcal{E} is not relatively Δ^0_2-categorical.

Lemma (Calvert, Cenzer, Harizanov, and Morozov 2006)

Let \mathcal{E} be an equivalence structure for which $\text{FIN}^\mathcal{E}$ is intrinsically Δ^0_2-computable. Then \mathcal{E} is Δ^0_2-categorical.
Proof.

Fix an effective enumeration \(\{ \mathcal{E}_i \}_{i \in \mathbb{N}} \) of the (partial) computable equivalence structures. Let \(\{ f_i \}_{i \in \mathbb{N}} \) be the corresponding enumeration of (total) computable functions.
Proof.

Fix an effective enumeration \(\{ E_i \}_{i \in \mathbb{N}} \) of the (partial) computable equivalence structures. Let \(\{ f_i \}_{i \in \mathbb{N}} \) be the corresponding enumeration of (total) computable functions.

Construct \(E \) of unbounded character so that if \(E \cong E_i \), then \(\text{FIN}_{E_i} \) is \(\Pi^0_1 \). This is done by setting a computable threshold for each element \(x \in E_i \) and guaranteeing if \(|[x]_{E_i}| \) rises beyond that threshold, then \(|[x]_{E_i}| \) is infinite.
Proof.

Fix an effective enumeration \(\{E_i\}_{i \in \mathbb{N}} \) of the (partial) computable equivalence structures. Let \(\{f_i\}_{i \in \mathbb{N}} \) be the corresponding enumeration of (total) computable functions.

Construct \(E \) of unbounded character so that if \(E \cong E_i \), then \(\text{FIN}^{E_i} \) is \(\Pi^0_1 \). This is done by setting a computable threshold for each element \(x \in E_i \) and guaranteeing if \(|[x]_{E_i}| \) rises beyond that threshold, then \(|[x]_{E_i}| \) is infinite.

At stage \(s > 0 \), operate in three steps:
Proof.

Fix an effective enumeration \(\{ \mathcal{E}_i \}_{i \in \mathbb{N}} \) of the (partial) computable equivalence structures. Let \(\{ f_i \}_{i \in \mathbb{N}} \) be the corresponding enumeration of (total) computable functions.

Construct \(\mathcal{E} \) of unbounded character so that if \(\mathcal{E} \cong \mathcal{E}_i \), then \(\text{FIN}^{\mathcal{E}_i} \) is \(\Pi^0_1 \). This is done by setting a computable threshold for each element \(x \in \mathcal{E}_i \) and guaranteeing if \(|[x]_{\mathcal{E}_i}| \) rises beyond that threshold, then \(|[x]_{\mathcal{E}_i}| \) is infinite.

At stage \(s > 0 \), operate in three steps:

1. Force any class in \(\mathcal{E} \) of size \(f_i(n, s) \) with \(i, n < s \) for which \(f_i(n, s) > 2^{i+n} \) to become infinite.
Proof.

Fix an effective enumeration \(\{E_i\}_{i \in \mathbb{N}} \) of the (partial) computable equivalence structures. Let \(\{f_i\}_{i \in \mathbb{N}} \) be the corresponding enumeration of (total) computable functions.

Construct \(E \) of unbounded character so that if \(E \cong E_i \), then \(\text{FIN}^{E_i} \) is \(\Pi^0_1 \). This is done by setting a computable threshold for each element \(x \in E_i \) and guaranteeing if \(|[x]_{E_i}| \) rises beyond that threshold, then \(|[x]_{E_i}| \) is infinite.

At stage \(s > 0 \), operate in three steps:

1. Force any class in \(E \) of size \(f_i(n, s) \) with \(i, n < s \) for which \(f_i(n, s) > 2^{i+n} \) to become infinite.

2. Build in \(E \), if one does not already exist, a class of size \(k \) for each \(k < s \) not within the set \(\{f_i(n, s) : i, n < s \text{ and } f_i(n, s) > 2^{i+n}\} \).
Proof.

Fix an effective enumeration \(\{E_i\}_{i \in \mathbb{N}} \) of the (partial) computable equivalence structures. Let \(\{f_i\}_{i \in \mathbb{N}} \) be the corresponding enumeration of (total) computable functions.

Construct \(E \) of unbounded character so that if \(E \cong E_i \), then \(\text{FIN}^{E_i} \) is \(\Pi^0_1 \). This is done by setting a computable threshold for each element \(x \in E_i \) and guaranteeing if \(|[x]_{E_i}| \) rises beyond that threshold, then \(|[x]_{E_i}| \) is infinite.

At stage \(s > 0 \), operate in three steps:

1. Force any class in \(E \) of size \(f_i(n, s) \) with \(i, n < s \) for which \(f_i(n, s) > 2^{i+n} \) to become infinite.

2. Build in \(E \), if one does not already exist, a class of size \(k \) for each \(k < s \) not within the set \(\{f_i(n, s) : i, n < s \text{ and } f_i(n, s) > 2^{i+n}\} \).

3. Create a new infinite equivalence class in \(E \).
Proof.

- Force any class in \mathcal{E} of size $f_i(n, s)$ with $i, n < s$ for which $f_i(n, s) > 2^{i+n}$ to become infinite.
- Build in \mathcal{E}, if one does not already exist, a class of size k for each $k < s$ not within the set $\{f_i(n, s) : i, n < s \text{ and } f_i(n, s) > 2^{i+n}\}$.

Claim

The structure \mathcal{E} has unbounded character.

Proof.

Fixing a positive integer k, there are at most $(1 + \log k)^2$ many pairs (i, n) with $2^{i+n} \leq k$. Thus, at any stage s,

$$\left| \left\{ m \leq k : (\exists i, n < s) \left[m = f_i(n, s) > 2^{i+n} \right] \right\} \right| \leq (1 + \log k)^2$$

Note that $\lim_{k \to \infty} (k - (1 + \log k)^2) = \infty$.
Building \mathcal{E}...

Proof.

- Force any class in \mathcal{E} of size $f_i(n, s)$ with $i, n < s$ for which $f_i(n, s) > 2^{i+n}$ to become infinite.
- Build in \mathcal{E}, if one does not already exist, a class of size k for each $k < s$ not within the set $\{f_i(n, s) : i, n < s \text{ and } f_i(n, s) > 2^{i+n}\}$.

Claim

If $\mathcal{E} \cong \mathcal{E}_i$, then $\text{FIN}^{\mathcal{E}_i}$ is Π^0_1.

Proof.

Note that $x \in \text{FIN}^{\mathcal{E}_i}$ if $(\forall s) \left[f_i(x, s) < 2^{i+x} \right]$.

Conversely, if $x \in \text{FIN}^{\mathcal{E}_i}$, then either $F_i(x) \leq 2^{i+x}$ or $F_i(x) > 2^{i+x}$.

1. If the former, then $(\forall s) \left[f_i(x, s) \leq 2^{i+x} \right]$.
2. If the latter, then $\mathcal{E} \not\cong \mathcal{E}_i$ as \mathcal{E} has no class of size $F_i(x)$.
Remark

Note that, in contrast to the previous example, there is no classical family Φ of Σ^c_2 formulas. Hence, the failure of relative computable categoricity is for classical reasons rather than effectiveness reasons.
Outline

1 Background

2 Index Set Complexities

3 Decidability Hypotheses

4 Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical

5 Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical

6 Arithmetically Categorical But Not Δ^0_n-Categorical

7 Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
Definition

A computable structure \mathcal{M} is \textit{arithmetically categorical} if between any two computable presentations \mathcal{A} and \mathcal{B} of \mathcal{M} there is an arithmetic isomorphism $\pi : \mathcal{A} \cong \mathcal{B}$.

Definition

A computable structure \mathcal{M} is \textit{relatively arithmetically categorical} if between any presentations \mathcal{A} and \mathcal{B} of \mathcal{M} there is an $(X \oplus Y)$-computable isomorphism $\pi : \mathcal{A} \cong \mathcal{B}$, where X is arithmetic in \mathcal{A} and Y is arithmetic in \mathcal{B}.

Asher M. Kach
Categoricity Versus Relative Categoricity
5 September 2012 28 / 45
Theorem (Ash 1987)

Any relatively arithmetically categorical structure is relatively Δ^0_n-categorical for some integer $n \in \mathbb{N}$.

Theorem (Kach and Montalbán)

There is a computable structure \mathcal{M} that is arithmetically categorical but not Δ^0_n-categorical for any integer $n \in \mathbb{N}$.
The Language...

Proof.
The structure is in the language \mathcal{L} consisting of:

- $\{C_k\}_{k \in \mathbb{N}}$: Unary component relations, specifying whether an element $x \in M$ is in the kth component (tree).
- $\{E\}$: Binary edge relation, specifying the edge relation on each tree.
- $\{M_j\}_{j \in \mathbb{N}}$: Unary marker relations, specifying whether a leaf node is marked by j.
- $\{L_i\}_{i \in \mathbb{N}}$: Unary temporary labels, identifying an element $x \in M$ uniquely at a specific stage in the construction.

The last relation is not only subtle, but also computably enumerable. More on it later... The other relations are straightforward.
Proof.

The structure is in the language \(\mathcal{L} \) consisting of:

- \(\{C_k\}_{k \in \mathbb{N}} \): Unary \textit{component relations}, specifying whether an element \(x \in M \) is in the \(k \)th component (tree).

- \(\{E\} \): Binary \textit{edge relation}, specifying the edge relation on each tree.

- \(\{M_j\}_{j \in \mathbb{N}} \): Unary \textit{marker relations}, specifying whether a leaf node is marked by \(j \).

- \(\{L_i\}_{i \in \mathbb{N}} \): Unary \textit{temporary labels}, identifying an element \(x \in M \) uniquely at a specific stage in the construction.

The last relation is not only subtle, but also computably enumerable. More on it later... The other relations are straightforward.
Proof.

The structure is in the language \mathcal{L} consisting of:

- $\{C_k \}_{k \in \mathbb{N}}$: Unary *component relations*, specifying whether an element $x \in M$ is in the kth component (tree).
- $\{E\}$: Binary *edge relation*, specifying the edge relation on each tree.

The last relation is not only subtle, but also computably enumerable. More on it later... The other relations are straightforward.
Proof.

The structure is in the language \mathcal{L} consisting of:

- $\{C_k\}_{k \in \mathbb{N}}$: Unary *component relations*, specifying whether an element $x \in M$ is in the kth component (tree).
- $\{E\}$: Binary *edge relation*, specifying the edge relation on each tree.
- $\{M_j\}_{j \in \mathbb{N}}$: Unary *marker relations*, specifying whether a leaf node is marked by j.
The Language...

Proof.

The structure is in the language \mathcal{L} consisting of:

- $\{C_k\}_{k \in \mathbb{N}}$: Unary *component relations*, specifying whether an element $x \in M$ is in the kth component (tree).
- $\{E\}$: Binary *edge relation*, specifying the edge relation on each tree.
- $\{M_j\}_{j \in \mathbb{N}}$: Unary *marker relations*, specifying whether a leaf node is marked by j.
- $\{L_i\}_{i \in \mathbb{N}}$: Unary *temporary labels*, identifying an element $x \in M$ uniquely at a specific stage in the construction.

The last relation is not only subtle, but also computably enumerable. More on it later... The other relations are straightforward.
Proof.

The structure is in the language \mathcal{L} consisting of:

- $\{C_k\}_{k \in \mathbb{N}}$: Unary *component relations*, specifying whether an element $x \in M$ is in the kth component (tree).
- $\{E\}$: Binary *edge relation*, specifying the edge relation on each tree.
- $\{M_j\}_{j \in \mathbb{N}}$: Unary *marker relations*, specifying whether a leaf node is marked by j.
- $\{L_i\}_{i \in \mathbb{N}}$: Unary *temporary labels*, identifying an element $x \in M$ uniquely at a specific stage in the construction.

The last relation is not only subtle, but also *computably enumerable*. More on it later... The other relations are straightforward.
A term is a pair \((k, m) \in \mathbb{N}^2\). The rank of a term \((k, m)\) is \(k\). The marker of a term \((0, m)\) is \(m\).
The Basic Trees...

Definition

A *term* is a pair \((k, m) \in \mathbb{N}^2\). The *rank* of a term \((k, m)\) is \(k\). The *marker* of a term \((0, m)\) is \(m\).

A nonempty sequence of terms \(\langle (k_1, m_1), \ldots, (k_\ell, m_\ell) \rangle\) is *acceptable* if \(k_i = k_{i+1} + 1\) and \(m_i \neq m_{i+1}\) for \(1 \leq i < \ell\).
The Basic Trees...

Definition

A term is a pair \((k, m) \in \mathbb{N}^2\). The rank of a term \((k, m)\) is \(k\). The marker of a term \((0, m)\) is \(m\).

A nonempty sequence of terms \(\langle (k_1, m_1), \ldots, (k_\ell, m_\ell) \rangle\) is acceptable if \(k_i = k_{i+1} + 1\) and \(m_i \neq m_{i+1}\) for \(1 \leq i < \ell\).

Definition

Fix a term \((k, m)\). The tree \(T_{(k,m)}\) is the set of acceptable strings \(\sigma\) with \(\sigma(0) = t\).
The Basic Trees...

Definition

A term is a pair \((k, m) \in \mathbb{N}^2\). The rank of a term \((k, m)\) is \(k\). The marker of a term \((0, m)\) is \(m\).

A nonempty sequence of terms \(\langle (k_1, m_1), \ldots, (k_\ell, m_\ell) \rangle\) is acceptable if \(k_i = k_{i+1} + 1\) and \(m_i \neq m_{i+1}\) for \(1 \leq i < \ell\).

Definition

Fix a term \((k, m)\). The tree \(T_{(k, m)}\) is the set of acceptable strings \(\sigma\) with \(\sigma(0) = t\).

The structure \(\mathcal{T}_{(k, m)}\) is the tree \(T_{(k, m)}\) with the component relation \(C_k\), its edge relation \(E\), and the marker relations \(M_m\).
The Basic Tree $\mathcal{T}_{(1,2)}$
Example

The Basic Tree $T_{(2,1)}$
Lemma

Fix integers $k > 0$ and $m \in \mathbb{N}$. The tree $T_{(k,m)}$ is not Δ^0_{k-1}-categorical.
Lemma

Fix integers $k > 0$ and $m \in \mathbb{N}$. The tree $T_{(k,m)}$ is not Δ^0_{k-1}-categorical.

Lemma (Ash and Knight 2000)

Fix an integer $n > 0$. Let \mathcal{A} be a computable presentation of a computable structure. If:

- The presentation \mathcal{A} is $(n - 1)$-friendly.
- The back-and-forth relation $\not\leq_n$ is computably enumerable.
- For every tuple $\overline{c} \in A$, there is a tuple $\overline{a} \in A$ that is n-free over \overline{c}.

Then \mathcal{A} is not Δ^0_n-categorical.
Fix a computable ordinal α. Define the αth back-and-forth relation \leq_α by $A \leq_\alpha B$ if

$$\Pi^c_\alpha - \text{Th}(A) \subseteq \Pi^c_\alpha - \text{Th}(B).$$

For $\bar{a}, \bar{a}' \in A$, define $\bar{a} \leq_\alpha \bar{a}'$ if $(A; \bar{a}) \leq_\alpha (A; \bar{a}')$.
Fix a computable ordinal \(\alpha \). Define the \(\alpha \)th back-and-forth relation \(\leq_{\alpha} \) by \(\mathcal{A} \leq_{\alpha} \mathcal{B} \) if

\[
\Pi^c_\alpha - \text{Th}(\mathcal{A}) \subseteq \Pi^c_\alpha - \text{Th}(\mathcal{B}).
\]

For \(\bar{a}, \bar{a}' \in \mathcal{A} \), define \(\bar{a} \leq_{\alpha} \bar{a}' \) if \((\mathcal{A}; \bar{a}) \leq_{\alpha} (\mathcal{A}; \bar{a}') \).

A computable presentation \(\mathcal{A} \) is \(\alpha \)-friendly if the back-and-forth relations \(\leq_{\beta} \), for \(\beta < \alpha \), are uniformly computably enumerable.
Back-and-Forth Relations...

Definition

Fix a computable ordinal α. Define the αth back-and-forth relation \leq_α by $A \leq_\alpha B$ if

$$\Pi^c_\alpha - \text{Th}(A) \subseteq \Pi^c_\alpha - \text{Th}(B).$$

For $\bar{a}, \bar{a}' \in A$, define $\bar{a} \leq_\alpha \bar{a}'$ if $(A; \bar{a}) \leq_\alpha (A; \bar{a}')$.

Definition

A computable presentation \mathcal{A} is α-friendly if the back-and-forth relations \leq_β, for $\beta < \alpha$, are uniformly computably enumerable.

Definition

A tuple $\bar{a} \in A$ is α-free over $\bar{c} \in A$ if for all $\bar{b} \in A$ and $\beta < \alpha$, there exist $\bar{a}' \in A$ and $\bar{b}' \in A$ such that $\bar{c} \bar{a} \bar{b} \leq_\beta \bar{c} \bar{a}' \bar{b}'$ and $\bar{c} \bar{a}' \nleq_\alpha \bar{c} \bar{a}$.

Asher M. Kach
Lemma

Fix integers $k > 0$ and $m \in \mathbb{N}$. The tree $T_{(k,m)}$ is not Δ^0_{k-1}-categorical.

Proof.

The presentation \mathcal{A} is $(n-1)$-friendly: The back-and-forth relations are computable for the standard presentation.

The back-and-forth relation $\not\leq_n$ is computably enumerable: The back-and-forth relations are computable for the standard presentation.

For every tuple $\bar{c} \in A$, there is a tuple $\bar{a} \in A$ that is n-free over \bar{c}: Choose (singleton) a away from \bar{c}. Fixing \bar{b}, choose a' away from a, \bar{b}, and \bar{c}. Let \bar{b}' be in the same position with respect to a' as \bar{b} is with respect to a. □
Remark

Though seemingly counter-intuitive, we discuss how to make $T_{(2,1)}$, for example, computably categorical. The construction maintains a global bag of (temporary) labels, a subset of $\{L_i\}_{i \in \mathbb{N}}$.

After isomorphisms catch up on x, we:
- Enumerate the unique temporary labels on x into the bag of labels (making them no longer unique).
- Apply all the temporary labels in the bag of labels to x.
- Apply new unique temporary labels to x.

Recall that the temporary labels were computably enumerable rather than computable.
Remark

Though seemingly counter-intuitive, we discuss how to make $T_{(2,1)}$, for example, computably categorical. The construction maintains a global bag of (temporary) labels, a subset of $\{L_i\}_{i \in \mathbb{N}}$.

At each stage of the construction, every element $x \in T_{(2,1)}$ has unique temporary labels. These computably identify x in M_i if $\mathcal{A} \cong M_i$.

After isomorphisms catch up on x, we:

- Enumerate the unique temporary labels on x into the bag of labels (making them no longer unique).
- Apply all the temporary labels in the bag of labels to x.
- Apply new unique temporary labels to x.

Recall that the temporary labels were computably enumerable rather than computable.
Remark

Though seemingly counter-intuitive, we discuss how to make $T_{(2,1)}$, for example, computably categorical. The construction maintains a global bag of (temporary) labels, a subset of $\{L_i\}_{i \in \mathbb{N}}$.

At each stage of the construction, every element $x \in T_{(2,1)}$ has unique temporary labels. These computably identify x in M_i if $A \cong M_i$. After isomorphisms catch up on x, we:

- Enumerate the unique temporary labels on x into the bag of labels (making them no longer unique).
- Apply all the temporary labels in the bag of labels to x.
- Apply new unique temporary labels to x.
- Recall that the temporary labels were computably enumerable rather than computable.
Though seemingly counter-intuitive, we discuss how to make $T_{(2,1)}$, for example, computably categorical. The construction maintains a global \textit{bag of (temporary) labels}, a subset of $\{L_i\}_{i \in \mathbb{N}}$.

At each stage of the construction, every element $x \in T_{(2,1)}$ has unique temporary labels. These computably identify x in \mathcal{M}_i if $\mathcal{A} \cong \mathcal{M}_i$. After isomorphisms catch up on x, we:

- Enumerate the unique temporary labels on x into the bag of labels (making them no longer unique).
- Apply all the temporary labels in the bag of labels to x.
- Apply new unique temporary labels to x.

Recall that the temporary labels were computably enumerable rather than computable.
Remark

Though seemingly counter-intuitive, we discuss how to make $\mathcal{T}_{(2,1)}$, for example, computably categorical. The construction maintains a global bag of (temporary) labels, a subset of $\{L_i\}_{i \in \mathbb{N}}$.

At each stage of the construction, every element $x \in \mathcal{T}_{(2,1)}$ has unique temporary labels. These computably identify x in \mathcal{M}_i if $\mathcal{A} \cong \mathcal{M}_i$. After isomorphisms catch up on x, we:

- Enumerate the unique temporary labels on x into the bag of labels (making them no longer unique).
- Apply all the temporary labels in the bag of labels to x.
- Apply new unique temporary labels to x.

Recall that the temporary labels were computably enumerable rather than computable.
Remark

The issue, of course, is that isomorphisms will not necessarily catch up. This causes Σ^0_1-differences that would break the n-freeness requirement.
A (Major) Issue...

Remark

The issue, of course, is that isomorphisms will not necessarily catch up. This causes Σ^0_1-differences that would break the n-freeness requirement.

Consequently, the tree of strategies must guess which isomorphisms will catch up and which will not. Any *garbage* constructed off the true path must be distributed across the tree.
Remark

The issue, of course, is that isomorphisms will not necessarily catch up. This causes Σ^0_1-differences that would break the n-freeness requirement.

Consequently, the tree of strategies must guess which isomorphisms will catch up and which will not. Any garbage constructed off the true path must be distributed across the tree.

Unfortunately, unlike in the earlier example, an individual strategy must build infinitely much stuff. This causes the earlier computable categoricity argument to fail as it exploited the necessity of only finitely much nonuniform information.
Remark

As a workaround, we attempt to define an isomorphism modulo certain permutations of nodes. This necessitates a complicated set of outcomes for the isomorphism requirement for M_i:

$$pe_i < pe_{i-1} < \cdots < pe_1 < pe_0 < se < f$$
Remark

As a workaround, we attempt to define an isomorphism modulo certain permutations of nodes. This necessitates a complicated set of outcomes for the isomorphism requirement for \mathcal{M}_i:

$$pe_i < pe_{i-1} < \cdots < pe_1 < pe_0 < se < f$$

In fact, life is even more complicated than this because of the need to never revisit a dead node (reinitialization is worse and avoided).
Remark

As a workaround, we attempt to define an isomorphism modulo certain permutations of nodes. This necessitates a complicated set of outcomes for the isomorphism requirement for \mathcal{M}_i:

$$p_e i < p_e i - 1 < \cdots < p_e 1 < p_e 0 < s e < f$$

In fact, life is even more complicated than this because of the need to never revisit a *dead* node (reinitialization is worse and avoided).

These outcomes measure how isomorphic A and \mathcal{M}_i appear to be. The f outcomes indicates not at all, the $p_e i$ outcome indicates as much as possible, and the intermediate outcomes indicate varying extents.
As a workaround, we attempt to define an isomorphism modulo certain permutations of nodes. This necessitates a complicated set of outcomes for the isomorphism requirement for M_i:

$$pe_i < pe_{i-1} < \cdots < pe_1 < pe_0 < se < f$$

In fact, life is even more complicated than this because of the need to never revisit a dead node (reinitialization is worse and avoided).

These outcomes measure how isomorphic A and M_i appear to be. The f outcomes indicate not at all, the pe_i outcome indicates as much as possible, and the intermediate outcomes indicate varying extents.

The important point is that the true outcome will be pe_i if $A \cong M_i$ (though not necessarily conversely).
Remark

Waving away the details of computable categoricity, there is still the issue that we want only arithmetic categoricity. Thus, when waiting for isomorphisms between \mathcal{A} and \mathcal{M}_i to catch up, we ignore $\bigcup_{k<i} C_k$.

Arithmetic Categoricity: If we can computably build an isomorphism $\pi: \mathcal{A} \upharpoonright \bigcup_{k \geq i} C_k \cong \mathcal{M}_i \upharpoonright \bigcup_{k \geq i} C_k$, then there is a Δ^0_{i+1}-isomorphism $\pi: \mathcal{A} \cong \mathcal{M}_i$.

Not Δ^0_n-Categoricity: Since only finitely many requirements influence any C_k, their action is essentially (nonuniformly) computable. Thus, this property is preserved from the basic tree.
Remark

Waving away the details of computable categoricity, there is still the issue that we want only arithmetic categoricity. Thus, when waiting for isomorphisms between A and M_i to catch up, we ignore $\bigcup_{k<i} C_k$.

Arithmetic Categoricity: If we can computably build an isomorphism

$$\pi : A \upharpoonright \bigcup_{k \geq i} C_k \cong M_i \upharpoonright \bigcup_{k \geq i} C_k,$$

then there is a Δ^0_{i+1}-isomorphism $\pi : A \cong M_i$.
Remark

Waving away the details of computable categoricity, there is still the issue that we want only arithmetic categoricity. Thus, when waiting for isomorphisms between \mathcal{A} and \mathcal{M}_i to catch up, we ignore $\bigcup_{k<i} C_k$.

Arithmetic Categoricity: If we can computably build an isomorphism

$$\pi : \mathcal{A} \upharpoonright \bigcup_{k \geq i} C_k \cong \mathcal{M}_i \upharpoonright \bigcup_{k \geq i} C_k,$$

then there is a Δ^0_{i+1}-isomorphism $\pi : \mathcal{A} \cong \mathcal{M}_i$.

Not Δ^0_n-Categoricity: Since only finitely many requirements influence any C_k, their action is essentially (nonuniformly) computable. Thus, this property is preserved from the basic tree.
Outline

1. Background
2. Index Set Complexities
3. Decidability Hypotheses
4. Δ^0_1-Categorical But Not Relatively Δ^0_1-Categorical
5. Δ^0_2-Categorical But Not Relatively Δ^0_2-Categorical
6. Arithmetically Categorical But Not Δ^0_n-Categorical
7. Δ^0_1-Categorical But Not Relatively Δ^0_α-Categorical
Feferman and Spector’s \mathcal{O}^\ast...

Definition (Feferman and Spector 1962)

There is a partial order $\mathcal{O}^\ast = (\mathcal{O}^\ast; \preceq)$ with the \preceq-relation c.e. and:

- For all $\alpha \in \mathcal{O}^\ast$, the set $\{\beta \preceq \alpha\}$ is linearly ordered and has no infinite hyperarithmetic descending sequence.
- The set \mathcal{O}^\ast has a \preceq-least element. The set of successor and limit elements and the predecessor function are computable.
- The set of $\alpha \in \mathcal{O}^\ast$ for which $\{\beta \in \mathcal{O}^\ast : \beta \preceq \alpha\}$ is well-ordered is isomorphic to \mathcal{O}.
- There is a computable sequence $\{\alpha_n \in \mathcal{O}^\ast : n \in \mathbb{N}\}$ such that the set $\{n \in \mathbb{N} : \alpha_n \in \mathcal{O}\}$ is Π^1_1-complete.
Definition (Feferman and Spector 1962)

There is a partial order $\mathcal{O}^* = (\mathcal{O}^*; \preceq)$ with the \preceq-relation c.e. and:

- For all $\alpha \in \mathcal{O}^*$, the set $\{\beta \preceq \alpha\}$ is linearly ordered and has no infinite hyperarithmetic descending sequence.
- The set \mathcal{O}^* has a \preceq-least element. The set of successor and limit elements and the predecessor function are computable.
- The set of $\alpha \in \mathcal{O}^*$ for which $\{\beta \in \mathcal{O}^* : \beta \preceq \alpha\}$ is well-ordered is isomorphic to \mathcal{O}.
- There is a computable sequence $\{\alpha_n \in \mathcal{O}^* : n \in \mathbb{N}\}$ such that the set $\{n \in \mathbb{N} : \alpha_n \in \mathcal{O}\}$ is Π^1_1-complete.

Remark

It does little harm to imagine \mathcal{O}^* as being a computable presentation of $\omega^1_{CK} \cdot (1 + \eta)$ with no hyperarithmetic descending sequences and with computable successor and limit elements and predecessor function.
Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

The index set complexity of the computably categorical structures is \(\Pi^1_1 \)-complete.

Proof.

Fix \(\{ \alpha_n \}_{n \in \mathbb{N}} \) such that \(\{ n \in \mathbb{N} : \alpha_n \in \mathcal{O} \} \) is \(\Pi^1_1 \)-complete. Build, uniformly in \(\alpha \in \mathcal{O}^* \), a computable structure \(A_\alpha \), where \(A_\alpha \) is computably categorical if and only if \(\alpha \in \mathcal{O} \).
Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

The index set complexity of the computably categorical structures is \(\Pi^1_1 \)-complete.

Proof.

Fix \(\{ \alpha_n \}_{n \in \mathbb{N}} \) such that \(\{ n \in \mathbb{N} : \alpha_n \in \mathcal{O} \} \) is \(\Pi^1_1 \)-complete. Build, uniformly in \(\alpha \in \mathcal{O}^* \), a computable structure \(A_\alpha \), where \(A_\alpha \) is computably categorical if and only if \(\alpha \in \mathcal{O} \).

Corollary

For each computable ordinal \(\alpha \), there is a computably categorical structure that is not relatively \(\Delta^0_\alpha \) categorical.
Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

Fix a computable ordinal α. There is a computable structure S that is computably categorical but not relatively Δ^0_α-categorical.

Proof.
Maintain computable categoricity by, at every stage, identifying vertices with a (temporary) property not shared anywhere else.

Prevent relative Δ^0_α-categoricity by preventing any Σ^i_α Scott Family. Do so by using (infinitely-branching) trees of height roughly α.
Theorem (Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky)

Fix a computable ordinal α. There is a computable structure S that is computably categorical but not relatively Δ^0_α-categorical.

Proof.

Maintain computable categoricity by, at every stage, identifying vertices with a (temporary) property not shared anywhere else.

Prevent relative Δ^0_α-categoricity by preventing any Σ^i_α Scott Family. Do so by using (infinitely-branching) trees of height roughly α.

\[\square \]
For $\alpha = \omega$, we illustrate the basic trees $T_{(\omega,m)}$ and $T_{(\omega,m,(k,n))}$.

The Basic Tree $T_{(\omega,m)}$
Remark

For $\alpha = \omega$, we illustrate the basic trees $T_{(\omega, m)}$ and $T_{(\omega, m, (k, n))}$.
References

C. J. Ash.
Categoricity in hyperarithmetical degrees.

C. J. Ash and J. Knight.
Computable structures and the hyperarithmetical hierarchy, volume 144 of *Studies in Logic and the Foundations of Mathematics*.

Wesley Calvert, Douglas Cenzer, Valentina Harizanov, and Andrei Morozov.
Effective categoricity of equivalence structures.

R. Douni, D. Khirshvel’d, and B. Khusainov.
Uniformity in the theory of computable structures.

Rodney G. Downey, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky.
Computable categoricity versus relative computable categoricity.
submitted.

S. S. Gončarov.
Selfstability, and computable families of constructivizations.

S. S. Gončarov.
The number of nonautoequivalent constructivizations.

Asher M. Kach and Daniel Turetsky.
\(\Delta^0_2\)-categoricity of equivalence structures.