
GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM

EXPONENTIAL GROWTH

RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG

Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes.
We show that groups acting without global fixed points on CAT(0) square complexes either have
uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar
and Sageev considers free actions. Our result lets us show uniform exponential growth for certain
groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of
the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups
acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric
group action have uniform exponential growth.

1. Introduction

In this article, we continue the inquiry to determine which groups that act on CAT(0) cube
complexes have uniform exponential growth. Let G be a group with finite generating set S and
corresponding Cayley graph Cay(G,S) equipped with the word metric. Let B(n, S) be the ball of
radius n in Cay(G,S). The exponential growth rate of G with respect to S is defined as

w(G,S) := lim
n→∞

|B(n, S)|1/n.

The exponential growth rate of G is defined as

w(G) := inf {w(G,S) | S finite generating set} .
We say a group G has exponential growth if w(G,S) > 1 for some (hence every) finite generating
set S. A group G is said to have uniform exponential growth if w(G) > 1. The reader is referred
to de la Harpe’s book [dlH02] for more details on growth of groups.

Many groups of exponential growth are known to have uniform exponential growth, for instance,
non-elementary hyperbolic groups [Kou98], relatively hyperbolic groups [Xie07], solvable groups
[Alp02, Osi03], nontrivial amalgamated free products and HNN-extensions [BdlH00], one-relator
groups [GdlH01], linear groups over a field of characteristic zero [EMO05], and many hierarchically
hyperbolic groups [ANS19]. The first examples of groups with exponential growth that do not have
uniform exponential growth were introduced by Wilson [Wil04].

Kar and Sageev showed that if a group acts freely on a CAT(0) square complex, then either it
has uniform exponential growth or it is virtually abelian [KS19] . In this article, we generalize the
result of Kar and Sageev by removing the assumption of a free action. By semisimplicity of cubical
isometries [Hag07, Theorem 1.4], freeness of the action implies that the group is torsion-free. Wise
shows, however, that groups actings geometrically on CAT(0) cube complexes need not even be
virtually torsion-free [Wis07, Section 9]. We show that even if the group contains elliptic elements,
we can still get uniform exponential growth.

Theorem A. Let G be a finitely generated group acting without global fixed point on a CAT(0)
square complex X. Then either G has uniform exponential growth with w(G) ≥ 600

√
2 or G stabilizes

a flat or line in X.
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See Section 2 for the definition of a flat. In the setting of groups acting properly on CAT(0)
square complexes, stabilizing a flat can be upgraded to virtually abelian.

Corollary 5.3. Let G be a finitely generated group that acts properly on a CAT(0) square complex.
Then either G has uniform exponential growth with w(G) ≥ 600

√
2, or G is virtually abelian.

Most known results on uniform exponential growth can be shown by producing a constant M > 0
such that in any generating set there exists a pair of elements with word length at most M that
generate a free semigroup or subgroup.

Definition 1.1 (N -short subgroup). Let G be a finitely generated group, with a finite generating
set S. We say that a sub(semi)group H in G is N -short with respect to S, if there exists a finite
collection of words with S-length at most N that generate H. We say G contains a uniformly
N -short H, if for every finite generating set S there exists a copy of H in G that is N -short with
respect to S.

Existence of uniformly N -short free subgroups or free semigroups in a group G immediately gives
the uniform bound w(G) ≥ N

√
2 (see [AN02, Proposition 2.4]). This was used by Grigorchuk and

de la Harpe [GdlH97, Section (A)] to show uniform exponential growth of torsion-free hyperbolic
groups. Their work builds upon work of Gromov [Gro87, Theorem 5.3(E)] that was proved by
Delzant [Del91, Théorème I].

We say that a group G has locally uniform exponential growth if there is a constant w0 > 1 such
that every finitely generated subgroup H of G either has w(H) ≥ w0 or H is virtually abelian.
This property is sometimes called “uniform uniform exponential growth”. In the setting of groups
acting properly on CAT(0) cube complexes, this is closely related to the strong Tits alternative
of Sageev and Wise [SW05, Theorem 1.1] for a given subgroup H. Such bounds on the growth
of subgroups have been shown by Mangahas for the mapping class group [Man10], depending on
the complexity of the surface, and by Kar and Sageev for groups acting freely on square complexes
[KS19]. The bounds on exponential growth in this paper are also uniform over finitely generated
subgroups with dependence only on the dimension of the cube complex. We remark that bounds
on uniform exponential growth need not pass to subgroups. For example, the free product of two
copies of Wilson’s group has w(G) ≥ 4

√
2 coming from its action on its Bass-Serre tree.

The proof of Theorem A relies on constructing a hyperbolic isometry with uniformly bounded
word length from pairs of elliptic isometries of a 2-dimensional cube complex. Our construction
also works for 3-dimensional cube complex.

Proposition 4.3. Let a and b be a pair of isometries of a CAT(0) cube complex X of dimension
two or three. Then either

(1) there exists a hyperbolic element in 〈a, b〉 whose length in a, b is at most L, where L is a
constant that only depends on dim(X), or,

(2) 〈a, b〉 fixes a point in X.

If X is 2-dimensional, then L = 12.

We use the fact that the Burnside groups B(2, 2) and B(2, 6) are finite in the proof of Propo-
sition 4.3. However, this means that we cannot use our proof to obtain a similar result in higher
dimensions. It remains open whether the above proposition holds in higher dimensions.

In this article, we also impose extra conditions on the cube complex to show uniform exponential
growth for groups acting on cube complexes of arbitrary dimension. In particular, we show the
following (see Section 2.5 for definition of a CAT(0) cube complex with isolated flats).
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Theorem B. There exists a constant wd > 1 depending only on d ∈ N such that the following
holds. Let X be a CAT(0) cube complex of dimension d with isolated flats that admits a geometric
group action. For any finitely generated group G acting freely on X, either w(G) ≥ wd or G is
virtually abelian.

Note that if the action of the group G on X is free and geometric then G is relatively hyperbolic.
Uniform exponential growth for relatively hyperbolic groups was proved by Xie [Xie07]. However,
we obtain bounds on growth depending only on dimension of X rather than hyperbolicty constants.
Moreover, our result shows that G has locally uniform exponential growth, which is new.

In the proof of Theorem B, we use a variation (Proposition 3.4) of work of Jankiewicz [Jan20]
on cubical dimension of small cancellation groups (see Lemma 2.14). If instead of isolated flats, we
impose the condition of hyperbolicity on our CAT(0) cube complex X, then we can use the same
proof strategy as for Theorem B to relax the requirement of a geometric group action to a weakly
properly discontinuous (WPD) action.

Proposition 3.7. There exists a constant wd > 1 depending only on d ∈ N such that the following
holds. Let X be a CAT(0) cube complex of dimension d that is hyperbolic. For any finitely generated
group G acting freely and weakly properly discontinuously on X, either w(G) ≥ wd or G is virtually
infinite-cyclic.

Similar results on uniform exponential growth for groups acting on hyperbolic spaces have been
obtained before. In [BF18, Theorem 13.1] Breuillard and Fujiwara show that if G is a finitely
generated group of isometries of a Gromov hyperbolic space, then either the exponential growth
rate is bounded from below by a positive constant depending on the joint minimal displacement
and the hyperbolicity constant or G fixes a pair of points in the boundary. Before that, Besson,
Courtois and Gallot showed that given a > 0, n ∈ N, there is a constant c(n, a) > 0 such that if M is
a complete Riemannian manifold of dimension n with pinched sectional curvature κM ∈ [−a2,−1]

and Γ is a finitely generated discrete group of isometries of M then either w(Γ) > ec(n,a) > 1
or Γ is virtually nilpotent [BCG11, Theorem 1.1]. The action of hyperbolic manifold groups and
more generally δ-hyperbolic groups is so nice that it is even possible to exhibit uniformly short free
subgroups [DKL19, Theorem 1.1] [Kou98, Théorème 5.1].

A feature of our results is that they depend only on the dimension of the cube complex. Our
results may be useful in understanding the cubical dimension of finitely generated groups as in
work of Jankiewicz [Jan20].

Besides groups that act properly on CAT(0) cube complexes, the results here allow us to give
the first proofs of uniform exponential growth for several groups that admit improper actions on
CAT(0) square complexes. We show that information about vertex stabilizers can be leveraged to
give bounds on exponential growth.

Corollary 6.1. Suppose G is a finitely generated group that acts by isometries on a CAT(0) square
complex X such that finitely generated subgroups of the vertex stabilizers are either virtually
abelian or have uniform exponential growth bounded below by w0 > 1. Then for any finitely
generated subgroup H ≤ G one of the following holds:

(1) H has uniform exponential growth with w(H) ≥ min
{

600
√

2, w0

}
, or

(2) H is virtually abelian, or
(3) H stabilizes a flat or line in X.

In particular, this lets us expand the list of acylindrically hyperbolic groups that are known to
have locally uniform exponential growth. In particular, we show that the Higman group and Artin
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groups with triangle-free defining graphs have locally uniform exponential growth (see Theorem 6.2
and Theorem 6.4).

Organization. In Section 2, we review background on cube complexes, CAT(0) spaces with iso-
lated flats, past results related to building free semigroups and uniform exponential growth in cube
complexes. In Section 3, we prove Theorem B and Proposition 3.7. In Section 4, we construct uni-
formly short hyperbolic isometries in any action on a cube complex of dimension at most 3 without
global fixed point. This is the key tool needed to prove Theorem A and Corollary 5.3 in Section 5.
We go on to prove locally uniform exponential growth of the Higman group and triangle-free Artin
groups in Section 6 where we prove Corollary 6.1.
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2. Background

In this section we review fundamentals on cube complexes and past results on building free
semigroups using CAT(0) cube complexes. For more basics on CAT(0) cube complexes see Sageev’s
notes [Sag14].

2.1. Cube complexes and hyperplanes. Let X be a CAT(0) cube complex. Let Isom(X) denote
the collection of cubical isometries of X. We will assume that any isometric group action on X
does not invert hyperplanes. This is achieved by cubically subdividing X once. We denote the
fixed point set of a cubical isometry a ∈ Isom(X) by Fix(a) ⊆ X. If two points x, y are fixed by
a, then the CAT(0) geodesic joining them is also fixed by a. Therefore, Fix(a) is a connected and
convex subspace of X (with respect to the CAT(0) metric).

Convex subcomplexes of CAT(0) cube complexes are particularly well-behaved. CAT(0) cube
complexes are often regarded as high dimensional generalizations of trees because convex subcom-
plexes satisfy the Helly property, that is, any collection of pairwise intersecting convex subcomplexes
have nonempty intersection.

A natural family of convex subspaces are hyperplanes. A hyperplane is a subspace that separates
the complex into two distinct half spaces by cutting every cube it intersects in half. We denote a
hyperplane in X by ĥ. Let H(X) denote the collection of all hyperplanes of X. For a subcomplex
A of X, let H(A) be the collection of hyperplanes of X that intersect A. A path joining two vertices
of X is called a combinatorial geodesic if it is a path of minimum length in the 1-skeleton of X
joining the two points. Note that every edge in a combinatorial geodesic uniquely corresponds to
a hyperplane separating the vertices.

Definition 2.1 (Cubical convex hull). Let A be a subspace of X. The cubical convex hull of A,
denoted cHull(A), is the smallest convex subcomplex of X containing A.
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Hyperplanes give the cube complex a wallspace structure in the sense of Haglund and Paulin
[HP98]. This wallspace structure produces a dual cube complex from a collection of hyperplanes
of X using Sageev’s construction [Sag95] (see [Sag14, Lecture 2] for more details). Since hyper-
planes encode combinatorial geodesics in a cube complex, the hyperplanes that cross a subcomplex
determine its cubical convex hull. We record this observation.

Observation 2.2. Let A be a subcomplex of X. Then the subcomplex cHull(A) is isomorphic to
the cube complex dual to H(A).

We say that two subcomplexes A,B ⊂ X are parallel when there exists p ≥ 0 such that A× [0, p]
embeds isometrically in X such that A × {0} = A and A × {p} = B. In light of Observation 2.2,
hyperplanes can be used to detect when two convex subcomplexes are parallel.

Lemma 2.3 ([Hua17, Lemma 2.8], [HJP16, Lemma 2.7]). Two convex subcomplexes are parallel
when they are dual to the same hyperplanes. Moreover, they are equal if and only if there are no
hyperplanes separating them.

2.2. Isometries of CAT(0) cube complexes and their associated subcomplexes. Let X be

a finite dimensional CAT(0) cube complex. Given a hyperplane ĥ of X and g a hyperbolic isometry

of X, we say g skewers ĥ if for some choice of halfspace h associated to ĥ we have, gph ⊂ h for
some p ≥ 1. Such p can be taken to be at most dim(X). Equivalently, g skewers ĥ if any CAT(0)

axis of g intersects ĥ in exactly one point. We say g is parallel to ĥ if any axis for g is contained in
the R-neighborhood of ĥ for some R ≥ 0. A hyperbolic isometry g is peripheral to ĥ if it neither
skewers it nor is parallel to it.

Given a hyperbolic isometry g of X, the skewer set of g, denoted sk(g), is the collection of all
hyperplanes skewered by g. The parallel subcomplex Yg of a hyperbolic isometry g is the maximal
subcomplex of X contained in the intersection of peripheral halfspaces containing the axes of g
(see [KS19]). Let p(g) be the collection of hyperplanes parallel to g. The parallel subcomplex Yg is
a 〈g〉-invariant subcomplex of X dual to

H(Yg) = sk(g) ∪ p(g).

This subcomplex naturally decomposes as a product Yg = Eg×Kg where Eg is dual to sk(g) and Kg

is dual to p(g) because any hyperplane in p(g) crosses every hyperplane of sk(g). The complex Eg
is a Euclidean subcomplex, that is, it isometrically embeds in Euclidean space [Jan20, Lemma 2.4].
The action of g on Yg respects the decomposition where g acts as a translation on Eg, and has
a fixed point in its action on Kg. Moreover, for every axis `g of g, the subcomplex Yg contains
cHull(`g), which is isometric to Eg.

2.3. Rank one isometries. We record some observations about rank one isometries of CAT(0)
cube complexes. Let X be a finite dimensional locally finite CAT(0) cube complex. An isometry g
of X is called rank one if it is hyperbolic and an axis of g does not bound a half flat. A bi-infinite
geodesic in X is called a rank one geodesic if it does not bound a half flat. The visual boundary
∂X of a geodesic metric space X consists of equivalence classes of geodesic rays emanating from
a base point where two rays are said to be equivalent if they have finite Hausdorff distance. The
homeomorphism type of the boundary does not depend on the choice of base point.

Lemma 2.4. [Bal95, Lemma III.3.3] Let g be a rank one isometry of a locally compact CAT(0)
space Y . Then g fixes exactly two points in the visual boundary ∂Y , denoted Λ(g).

We now show that g acts cocompactly on its parallel subcomplex Yg when g is a rank one
isometry.
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Proposition 2.5. Let g be a hyperbolic isometry of X, and let `g be a CAT(0) axis of g. Then
any bi-infinite CAT(0) geodesic within finite Hausdorff distance from `g is contained in the parallel
subcomplex Yg of g.

Moreover, if g is rank one, then the parallel subcomplex Yg is the maximal convex subspace of
X with ∂Yg = Λ(g). Furthermore, Yg is a quasi-line on which g acts cocompactly.

Proof. Let ` be a bi-infinite geodesic such that dHaus(`, `g) < ∞. It is straightforward to see that
the two geodesics are asymptotic. By the Flat strip theorem [BH99, Theorem II.2.13], we get that
` and `g are in fact parallel. Therefore ` ⊂ Yg.

Suppose g is rank one. The limit set Λ(g) has two points by Lemma 2.4. Any bi-infinite geodesic
joining Λ(g) has finite Hausdorff distance from `g, and by the above is contained in Yg. Furthermore,
by [Hag20, Lemma 4.8] cHull(`g) is contained in a bounded neighborhood of the axis `g, so the
action of g on cHull(`g) is cocompact. The parallel subcomplex Yg decomposes as a product of
cube complexes Eg × Kg, where Eg is isometric to cHull(`g) and Kg is bounded since g is rank
one. Thus ∂Yg = ∂Eg = Λ(g). The action of g preserves the product decomposition and acts as a
translation on Eg. Hence, it follows that the action of g on Yg is cocompact. �

We record the following consequence that will be used in the proof of Theorem B.

Lemma 2.6. Let a and b be rank one isometries of X such that Λ(a) = Λ(b). Then Ya = Yb.

Proof. Since Λ(a) = Λ(b), an axis of a and an axis of b are finite Hausdorff distance apart. Then
by Proposition 2.5, `b ⊂ Ya and `a ⊂ Yb. By Proposition 2.5, Ya is the maximal convex subspace of
X with ∂Ya = Λ(a). Therefore Yb ⊆ Ya and vice versa. Thus they are equal. �

2.4. Types of groups actions and Bieberbach’s Theorem. We recall the definitions of free,
proper, and discrete actions on possibly locally infinite CW complexes. Let X be a CW complex
and let G be a discrete group acting cellularly by isometries on X. The action of G is proper when
for every compact set K in X, the collection {g ∈ G|gK ∩ K 6= ∅} is finite. Since X is a CW
complex, this is equivalent to requiring that every cell stabilizer is finite (see for instance, [Kap19]).

The action of G on X is free if every point in X has trivial stabilizer. We say the action is
discrete if G is a discrete subgroup of homeomorphisms of X with respect to the compact open
topology. For CW complexes, proper actions are always discrete. We recall the following version
of Bieberbach’s theorem for later reference.

Theorem 2.7 (Bieberbach’s Theorem). [Thu97, Corollary 4.1.13] For each dimension n, there is
an integer m such that any group acting discretely by isometries on Euclidean n-space En has an
abelian subgroup of index at most m.

2.5. Flats in CAT(0) spaces.

Definition 2.8. Let X be a CAT(0) space. For k ≥ 2, a (k-)flat in X is an isometrically embedded
copy of Euclidean space Ek. A half-flat in X is an isometrically embedded copy of R× R+.

The reader is referred to [Hru05] for details on CAT(0) spaces with isolated flats. We recall the
definition here.

Definition 2.9. A CAT(0) space X has isolated flats if there is a non-empty Isom(X)-invariant
collection of flats F, of dimension at least two, such that the following conditions hold:

(1) (Maximal) There exists a constant D < ∞ such that each flat in X lies in the D-tubular
neighborhood of some F ∈ F.

(2) (Isolated) For every ρ < ∞ there exists κ(ρ) < ∞ such that for any two distinct flats
F, F ′ ∈ F, diam(Nρ(F ) ∩Nρ(F

′)) < κ(ρ).
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We say a CAT(0) cube complex X has isolated flats if X with its CAT(0) metric is a CAT(0)
space with isolated flats. CAT(0) cube complexes are particularly well-adapted to studying isolated
flats because hyperplanes inherit the isolated flats property.

Lemma 2.10. Let X be a CAT(0) cube complex with isolated flats. Let ĥ be a hyperplane of X.

Then either ĥ does not have any flats or it is also a CAT(0) cube complex with isolated flats.

Proof. Let F be a flat contained in ĥ. Every flat in ĥ is a flat in X and hence there exists a
maximal flat F ′ in F containing F . Since intersection of two convex sets is convex in a CAT(0)

space, ĥ ∩ F ′ is convex. Thus ĥ ∩F is the non-empty collection of maximal flats in ĥ that satisfy
Definition 2.9. �

Lemma 2.11. Any half flat in a CAT(0) space with isolated flats that admits a geometric group
action is contained in a bounded Hausdorff neighborhood of a maximal flat in F.

Proof. This follows because such spaces are relatively hyperbolic with respect to the collection of
maximal flats by Hruska and Kleiner [HK05]. �

Lemma 2.12. Let a be a rank one isometry and b be a hyperbolic isometry of a CAT(0) space X
with isolated flats that admits a geometric group action. If b fixes Λ(a) then b is also a rank one
isometry and Λ(a) = Λ(b).

Proof. Let b be the homeomorphism of ∂X induced by b. By [Rua01, Theorem 3.3], the set of
elements of ∂X fixed by b is equal to ∂Min(b). Therefore, Λ(a) ⊆ ∂Min(b). If b is not rank one
then any axis of b bounds a half-flat, which is contained is a bounded neighborhood of a maximal
flat F by Lemma 2.11. Hence, ∂Min(b) ⊆ ∂F . However, Λ(a) cannot be contained in the boundary
of a maximal flat because a is rank one. Thus, b is also a rank one isometry and Λ(a) = Λ(b) by
Lemma 2.4. �

2.6. Past results building free semigroups in cube complexes. Uniform exponential growth
is typically proved by generating uniform length free semigroups. For instance, for a 2-dimensional
cube complex Kar and Sageev show the following:

Proposition 2.13. [KS19, Proposition 15] Let a, b be two distinct hyperbolic isometries of a
CAT(0) square complex X. Then either

(1) 〈a, b〉 contains a 10-short free semigroup, or
(2) there exists a Euclidean subcomplex of X invariant under 〈a, b〉.

In [Jan20], Jankiewicz obtains the following generalization of Proposition 2.13 to higher dimen-
sional cube complexes.

Lemma 2.14. [Jan20, Lemma 4.2] Let a, b be two distinct hyperbolic isometries of a d-dimensional
CAT(0) cube complex X such that 〈a, b〉 acts freely on X. Then one of the following hold

(1) (Short free semigroup) there exists a constant L = L(d) < ∞ such that 〈a, b〉 contains an
L-short free semigroup, or,

(2) (Stabilize hyperplane) one of 〈bN , a−d!bNad!〉 or 〈aN , b−d!aNbd!〉 stabilizes a hyperplane of
X, or

(3) (Virtually abelian powers) the group 〈aN , bN 〉 is virtually abelian.

where N = d!K3! and K3 is the Ramsey number R(d+ 1, 3).

Compared to Proposition 2.13, Lemma 2.14 requires taking powers. However, under the addi-
tional assumption that X has isolated flats and a geometric group action (as in Section 3), we can
recover Proposition 2.13 in all dimensions (see Proposition 3.4).
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3. CAT(0) spaces with isolated flats

The goal of this section is to prove Theorem B. We start by proving some results that lead up
to Proposition 3.4, which is the main lemma used to prove Theorem B. In what follows, let (X,F)
be a CAT(0) space with isolated flats that admits a geometric group action. When X is a CAT(0)
cube complex that admits a geometric group action, X is finite dimensional and locally finite.

Lemma 3.1. Let a and b be a pair of hyperbolic isometries of X such that 〈aN , bM 〉 ≤ Isom(X)
stabilizes a flat for some N,M ∈ Z \ {0}. Then 〈a, b〉 ≤ Isom(X) stabilizes a maximal flat in X.

Proof. Let 〈aN , bM 〉 stabilize a flat F0. By Definition 2.9(Maximal), there exists a maximal flat
F ∈ F such that F0 is contained in a D-neighborhood of F . Let `a and `b be axes of a and b
respectively. Then `a and `b are contained in a bounded neighborhood of F . This is because aN

has an axis in F0, `a is also an axis of aN , and any two axes of aN are parallel in X. The same is
true for `b and bM . The axis `a (resp. `b) is also in a bounded neighborhood of aF (resp. bF ). Since
the collection F is Isom(X)-invariant, aF, bF ∈ F. Now by Definition 2.9(Isolated) and maximality
of F , we get that F = aF and F = bF . Thus a and b stabilize F . �

Lemma 3.2. Let a and b be a pair of hyperbolic isometries of X such that 〈aN , bM 〉 ≤ Isom(X)
stabilizes a line for some N,M ∈ Z \ {0}. Then either 〈a, b〉 stabilizes a flat or a and b are rank
one isometries and 〈a, b〉 fixes Λ(a) = Λ(b) ⊂ ∂X.

Proof. Let ` be a line stabilized by 〈aN , bM 〉. Suppose ` is contained in a tubular neighborhood of
some maximal flat F ∈ F. Since maximal flats in X are isolated, 〈aN , bM 〉 stabilizes F . Now by
Lemma 3.1, 〈a, b〉 stabilizes a flat.

Now suppose ` is not contained in a tubular neighborhood of any maximal flat F ∈ F. Then
by Lemma 2.11, ` is a rank one geodesic. Hence, aN and bM are rank one isometries, and so are a
and b. The axes of a and b fellow travel so they share the same endpoints Λ = Λ(a) = Λ(b). Thus
〈a, b〉 fixes Λ by Lemma 2.4. �

We obtain a similar result when an element and its conjugate stabilize a flat or line.

Lemma 3.3. Let a and b be a pair of hyperbolic isometries of X such that 〈a, bab−1〉 ≤ Isom(X)
stabilizes a flat or a line. Then either 〈a, b〉 stabilizes a flat or a and b are rank one isometries and
〈a, b〉 fixes Λ(a) = Λ(b) ⊂ ∂X.

Proof. Let E be a line or flat stabilized by 〈a, bab−1〉 and suppose E is contained in a tubular
neighborhood of some maximal flat F ∈ F. Let `a and `bab−1 := b`a be fixed axes of a and bab−1

respectively. Then `a and b`a are contained in a bounded neighborhood of F . The axis `a (resp. b`a)
is also in a bounded neighborhood of aF (resp. bF ). Since the collection F is Isom(X)-invariant,
aF, bF ∈ F. Now by Definition 2.9(Isolated), we get that F = aF and F = bF . Therefore a and b
stabilize F .

Now suppose E does not lie in a tubular neighborhood of a maximal flat. It follows that
dim(E) = 1, so E is an axis for a. By Lemma 2.11, a is a rank one isometry. Both a and bab−1

stabilize Λ(a), which is equal to the pair of end points of E. Therefore b and hence 〈a, b〉 also fixes
Λ(a). Then by Lemma 2.12, we conclude that b is also a rank one isometry and Λ(a) = Λ(b). �

In light of the above results, we are able to upgrade Lemma 2.14 in the setting of isolated flats.
For the remainder of this section let X be a CAT(0) cube complex of dimension d with isolated
flats that admits a geometric group action.

Proposition 3.4. Let a, b ∈ Isom(X) be a pair of hyperbolic isometries of X such that 〈a, b〉 acts
freely on X. There exists a constant M = M(d) <∞ such that either

(1) 〈a, b〉 contains an M -short free semigroup, or
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(2) the subgroup 〈a, b〉 stabilizes a flat, or
(3) a and b are rank one isometries and 〈a, b〉 fixes Λ(a) = Λ(b) ⊂ ∂X.

Proof. The proof is by induction on the dimension of X. For the base cases, if dim(X) = 1 then
we are done by Lemma 5.1 with M(1) = 4. If dim(X) = 2 then the conclusions are satisfied by
[KS19, Main Theorem], with M(2) = 10.

For the induction step, apply Lemma 2.14. Let M(d) = max {(2d! +N) ·M(d− 1), L(d)} where
L(d) is the constant from Lemma 2.14. If the condition (Short free semigroup) is satisfied then
we are done. If the condition (Virtually abelian powers) is satisfied then 〈aN , bN 〉 stabilizes a flat
or line by the Flat Torus Theorem [BH99]. By Lemma 3.1 or Lemma 3.2, conclusion (2) or (3)
holds. If the condition (Stabilize hyperplane) is satisfied then up to switching a and b, the group
H = 〈aN , b−d!aNbd!〉 stabilizes a hyperplane. Since hyperplanes are convex in the cube complex,

the elements aN and b−d!aNbd! have axes in ĥ [BH99, Chapter II.6 Proposition 6.2(4)]. Hence,

they are both hyperbolic in the restricted action of H on ĥ. Moreover, the restricted action is
free. Therefore by the induction hypothesis, 〈aN , b−d!aNbd!〉 either contains an M(d− 1)-short free

semigroup or 〈aN , b−d!aNbd!〉 stabilizes a flat in ĥ or aN and b−d!aNbd! are rank one isometries fixing

Λ(aN ) = Λ(b−d!aNbd!) ⊂ ∂ĥ ⊂ ∂X. In the case when 〈aN , b−d!aNbd!〉 stabilizes a flat in ĥ, conclusion
(2) or (3) holds by Lemma 3.3 followed by Lemma 3.1 or Lemma 3.2. In the remaining case, b−d!

fixes Λ(aN ) because b−d!Λ(aN ) = Λ(b−d!aNbd!). By Lemma 2.12, b−d! is a rank one isometry with
Λ := Λ(b−d!) = Λ(aN ). Therefore, a and b are also rank one and 〈a, b〉 fixes Λ = Λ(a) = Λ(b). �

Now that we understand how pairs of hyperbolic isometries stabilize flats and pairs of points in
∂X, we are able to extend this to any finite collection.

Lemma 3.5. Let s1, . . . , sn be a collection of hyperbolic isometries of X such that for each 1 ≤
i 6= j ≤ n, either 〈si, sj〉 stabilizes a flat or si, sj are rank one isometries and 〈si, sj〉 stabilizes
Λ(si) = Λ(sj). Then either 〈s1, . . . , sn〉 stabilizes a flat or for every i ≥ 1, si is a rank one isometry
and 〈s1, . . . , sn〉 stabilizes Λ(s1) = · · · = Λ(sn) ⊂ ∂X.

Proof. If s1 is a rank one isometry then so is every si. Indeed, rank one isometries do not stabilize
any flat and every hyperbolic isometry g ∈ Stab(Λ(s1)) is rank one with Λ(g) = Λ(s1).

We may thus assume that every pair in {s1, . . . , sn} stabilizes a flat. Let Ei be a flat stabilized
by 〈s1, si〉 where 2 ≤ i ≤ n. By Definition 2.9(Maximal), Ei is contained in a tubular neighborhood
of maximal flat Fi ∈ F. We argue as in proof of Lemma 3.1 that 〈s1, si〉 stabilizes Fi. Let ` be
an axis of s1. Then ` is contained in a bounded neighborhood of Fi for all 2 ≤ i ≤ n. Therefore
by Definition 2.9(Isolated), Fi = Fj =: F for all i 6= j. Therefore, each si stabilizes F and hence
〈s1, . . . , sn〉 stabilizes a flat in X. �

We are now ready to prove Theorem B.

Theorem B. There exists a constant wd > 1 depending only on d ∈ N such that the following
holds. Let X be a CAT(0) cube complex of dimension d with isolated flats that admits a geometric
group action. For any finitely generated group G acting freely on X, either w(G) ≥ wd or G is
virtually abelian.

Proof. Let S = {s1, . . . , sn} be a finite generating set for G. Since the action is free, each si is a
hyperbolic isometry of X. For every 1 ≤ i 6= j ≤ n, consider the pair si and sj . By Proposition 3.4
applied to si and sj , if there exists a constant M = M(d) < ∞ such that 〈si, sj〉 contains an

M -short free semigroup, then w(G) ≥ M
√

2 =: wd. So suppose for all pairs i 6= j, either 〈si, sj〉
stabilizes a flat or si, sj are rank one isometries and 〈si, sj〉 stabilizes Λ(si) = Λ(sj). By Lemma 3.5,
either G = 〈s1, . . . , sn〉 stabilizes a flat or for every i ≥ 1, si is a rank one isometry and G stabilizes
Λ := Λ(s1) = · · · = Λ(sn) ⊂ ∂X.
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First suppose G stabilizes a flat. Since G acts freely on X, it is a discrete subgroup of isometries
of the flat. Thus by Bieberbach’s theorem, the group G is virtually abelian.

Now suppose each si is a rank one isometry and G stabilizes Λ. By Lemma 2.6, the parallel
subcomplex Ysi coincides with Ysj for all i 6= j. Let Y := Ys1 = · · · = Ysn . By Proposition 2.5, Y is
a quasi-line. Since G acts freely on X, G acts freely and hence properly on Y . By Proposition 2.5,
each si acts cocompactly on Y . Hence, G acts geometrically on Y . Thus, G is two-ended and hence
virtually infinite cyclic. �

If instead of isolated flats, we impose the condition of hyperbolicity on our CAT(0) cube complex
X, then we can use the same proof strategy as for Theorem B to get uniform exponential growth
where the requirement of a geometric group action is replaced with the weaker hypothesis of a
weakly properly discontinuous action introduced Bestvina and Fujiwara [BF02, Section 3]. (see
[Osi16] for more details on acylindrical hyperbolicity). We first recall a lemma from a paper of
Dahmani, Guirardel, and Osin.

Lemma 3.6. [DGO17, Lemma 6.5] Let G be a group acting on a δ-hyperbolic space X and let
h ∈ G be a hyperbolic WPD element. Then h is contained in a unique maximal virtually cyclic
subgroup of G, E(h). Moreover, E(h) = {g ∈ G|dHaus(g`, `) < ∞}, where ` is a quasi-geodesic
axis of h in X.

In more general actions on hyperbolic spaces, stabilizers of endpoints of hyperbolic isometries
need not be virtually abelian let alone virtually cyclic. By requiring that hyperbolic isometries be
WPD, we can prove the following.

Proposition 3.7. There exists a constant wd > 1 depending only on d ∈ N such that the following
holds. Let X be a CAT(0) cube complex of dimension d that is hyperbolic. For any finitely generated
group G acting freely and weakly properly discontinuously on X, either w(G) ≥ wd or G is virtually
infinite-cyclic.

Proof. Let a, b ∈ G be two distinct hyperbolic isometries of X. Suppose 〈aM , bN 〉 stabilizes a line
` in X. Then aM , bN fix the endpoints of `. Since a and aN share the same fixed points in ∂X, we
conclude that a and b fix the same pair of points in ∂X. This implies that b`a has finite Hausdorff
distance from `a. Thus by Lemma 3.6, b ∈ E(a) and 〈a, b〉 is virtually cyclic. Similarly, if a and
bab−1 stabilize a line then 〈a, b〉 is virtually cyclic because b ∈ E(a).

Now let {s1, . . . , sn} be a finite generating set of G such that each si acts as a hyperbolic isometry
of X. Then the result follows as in the proof of Proposition 3.4, Lemma 3.5 and Theorem B. �

Remark 3.8. Let G be a group acting freely on a CAT(0) cube complex X. If G satisfies the
conclusions of Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.5, then we can use Lemma 2.14
as above to obtain a uniform exponential growth result for G.

A simple example to illustrate the difficulty of working with powers is the following: Let G =
〈x, y|[x2, y2] = 1〉. Then G acts freely on a CAT(0) cube complex because its presentation 2-
complex can be subdivided into a CAT(0) square complex. The subgroup 〈x2, y2〉 is free abelian.
However, G is far from being virtually abelian. The group G is isomorphic to a (f.g. free)-by-cyclic
group. A brief outline is as follows: we change the presentation by replacing the generator y by
z = xy and we get G = 〈x, z|x2zx−1zx−2z−1xz−1 = 1〉. Consider the epimorphism φ : G → Z
which sends x to 1 and z to 0. Then by Brown’s criterion [Bro87] (see also [DT06, Section 5]),
ker(φ) is finitely generated and by Magnus’s Freiheitssatz [Mag30] it is a free group. Thus G is
isomorphic to ker(φ) o Z.

10



4. Generating hyperbolic isometry

In this section, our goal is to produce a hyperbolic isometry g of a CAT(0) cube complex X
by composing two elliptic isometries a and b, such that g has uniform length in a and b. For
example, if a and b are two elliptic isometries of a tree with disjoint fixed points, then g = ab is a
hyperbolic isometry of the tree [Ser03, I. Proposition 26]. We obtain an analogous result when X
has dimension 2 or 3.

We first prove a general lemma quantifying how elliptic isometries of CAT(0) cube complexes
interact with the cubical hull of their fixed sets.

Lemma 4.1. Let X be a d-dimensional CAT(0) cube complex and let a be an elliptic isometry of
X. Then cHull(Fix(a)) is pointwise fixed by ak where k = lcm{1, 2, . . . , d}.

Proof. Let A := Fix(a). By Observation 2.2, cHull(A) is dual to the collection of hyperplanes
H(A). We will show that ak fixes each hyperplane in H(A), which implies that ak pointwise fixes
cHull(A).

Let A0 be the union of all open cubes of X that intersect A non-trivially. Then a preserves every
cube C ∈ A0. Also every hyperplane that crosses C is in H(A). Since C contains fixed points of
a, the action of a on C is determined by a permutation of at most d hyperplanes. However, the
order of every cyclic permutation group on d objects divides k = lcm {1, 2, . . . , d}, so ak is a trivial
permutation of hyperplanes crossing a cube. Therefore, ak fixes each hyperplane in H(A). �

The next lemma differs from Proposition 4.3 in that the conclusion involves the subgroup 〈ak, bk〉
instead of 〈a, b〉.

Lemma 4.2. Let a, b be two elliptic isometries of a CAT(0) cube complex X of dimension d. If their
fixed sets are separated by a hyperplane then there exists a hyperbolic isometry g ∈ 〈a, b〉, such that
g has length at most 2d in a and b. Otherwise, the subgroup 〈ak, bk〉, where k = lcm{1, 2, . . . , d},
fixes pointwise the intersection cHull(Fix(a)) ∩ cHull(Fix(b)).

Proof. Let ĥ be a hyperplane that separates A := Fix(a) and B := Fix(b). Since X is d-dimensional,

there are two hyperplanes in {ĥ, aĥ, a2ĥ, . . . , adĥ} that are either equal or disjoint. If ĥ = aĥ, then

the point in ĥ closest to A is fixed by a, which is not possible since ĥ separates A and B. Suppose
ĥ = akĥ for some 2 ≤ k ≤ d, and for all m = 1, . . . , k − 1 we have ĥ 6= amĥ and ĥ ∩ amĥ 6= ∅.
Then the collection Hk := {ĥ, aĥ, . . . , ak−1ĥ} is invariant under a. Also each pair of hyperplanes
in Hk intersects, therefore by the Helly property for hyperplanes they all have a common point
of intersection which is invariant under a. This is again not possible since ĥ separates A and B.
Therefore, there exists r, s ∈ {1, 2, . . . , d} such that arĥ and bsĥ are disjoint from ĥ and contained in

different halfspaces determined by ĥ. Let h be the halfspace containing A. Then we have bsh ⊂ arh.
See Figure 1. Thus a−rbs is a hyperbolic isometry of length at most 2d in a and b.

If there is no hyperplane separating A and B, then cHull(A) and cHull(B) intersect in a non-
empty set. Therefore, by Lemma 4.1, ak and bk fix cHull(A)∩cHull(B), where k = lcm{1, 2, . . . , d}.

�

We will now prove Proposition 4.3. Recall that the free Burnside group B(m,n) is the quotient
of the free group on m generators by the normal subgroup generated by the nth powers of all the
elements. If m ≥ 2 and n is sufficiently large, then B(m,n) is infinite [NA68]. However, for small
values of n, some are known to be finite. For instance, B(2, 2) ∼= Z/2Z ⊕ Z/2Z and B(2, 6) are
known to be finite [Hal58]. In order to extend our proof of Proposition 4.3 for cube complexes of
dimension d ≥ 4, we would need B(2, k), where k = lcm{1, 2, . . . , d}, to be finite. However, already
for d = 4, it is not known whether B(2, 12) is finite or not.
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Figure 1. The hyperplanes arĥ and bsĥ are disjoint from ĥ.

Proposition 4.3. Let a and b be a pair of isometries of a CAT(0) cube complex X of dimension
two or three. Then either

(1) there exists a hyperbolic element in 〈a, b〉 whose length in a, b is at most L, where L is a
constant that only depends on dim(X), or,

(2) 〈a, b〉 fixes a point in X.

If X is 2-dimensional, then L = 12.

Proof. Let F (α, β) be the free group on two generators, generated by α and β. First assume X
is 2-dimensional. Let K be the kernel of the map from F (α, β) to B(2, 2). Then K is finitely
generated by α2, β2, αβ2α−1, βα2β−1. Let w1 = α,w2 = β,w3 = αβα−1, w4 = βαβ−1. Then K is
generated by w2

1, w
2
2, w

2
3, w

2
4 and each wi has length at most 3 in F (α, β). Let φ : F (α, β) → 〈a, b〉

be the map that sends α to a and β to b. Then wi := φ(wi) for 1 ≤ i ≤ 4 also has length at most
3 in 〈a, b〉. The following is a schematic:

1 // K �
�

//

��

F (α, β) // //

φ

��

B(2, 2) //

��

1

1 // φ(K) �
�

// 〈a, b〉 // // (finite) // 1

If wi is a hyperbolic isometry of X for some 1 ≤ i ≤ 4, then we are done. So suppose each wi is
elliptic in X. For i 6= j, by Lemma 4.2, either 〈wi2, wj2〉 fixes cHull(Fix(wi)) ∩ cHull(Fix(wj)), or
there exists a hyperbolic isometry in 〈wi, wj〉 of length at most 4 in wi, wj , so of length at most
4 · 3 = 12 =: L in 〈a, b〉. Suppose the latter happens for each pair wi, wj . By Helly’s property for
cubically convex sets, there exists a point x ∈

⋂
cHull(Fix(wi)), which is fixed by each wi

2 and
hence by φ(K). Since K is a finite index subgroup of F (α, β), φ(K) is a finite index subgroup of
〈a, b〉. Thus 〈a, b〉 has a global fixed point in X.

If X is 3-dimensional, then we consider the group B(2, 6) instead of B(2, 2) which is also finite.
Let M > 0 be the maximum length in α, β of the elements in the smallest finite generating set of
K. Then as above, we can either find a hyperbolic isometry of length at most 6M = L in 〈a, b〉 or
〈a, b〉 fixes a point in X. �

5. Cubical groups generated with torsion

In this section, X will be a CAT(0) square complex. We consider a finitely generated group G
acting without global fixed point on X. In [KS19], the authors restrict their attention to free actions.
Freeness implies that every element of G acts as a hyperbolic isometry of X. If the action is not
free, then a given generating set may consist partially or entirely of elements acting elliptically on
X. We will use Proposition 4.3 to construct a hyperbolic isometry from elliptic isometries and then
build on the proof of Main Theorem in [KS19].
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Before proving Theorem A, we recall the basic case of groups acting on trees.

Lemma 5.1. Let S be a finite collection of isometries of a simplicial tree T . Either 〈S〉 stabilizes
a point or a line, or 〈S〉 contains a 4-short free semigroup.

Proof. Suppose S contains a hyperbolic isometry g of T with axis `. If S ⊂ Stab(`) then we are
done. Otherwise, there exists s ∈ S such that the axis s` 6= `. By [KS19, Proposition 10], g±1

and sg±1s−1 generate a free semigroup. If S consists only of elliptic isometries of T , then we may
assume there exists elements a, b ∈ S that do not fix a common point or else we are done. By [Ser03,
I Proposition 26], the element ab is a hyperbolic isometry of T . We may repeat the argument above
with g = ab. �

We use Proposition 4.3 to generalize [KS19, Proposition 15] to actions that are not free.

Proposition 5.2. Let S be a finite collection of isometries of X, and suppose S contains at least
one hyperbolic isometry, and at least one elliptic isometry. Then either

(1) 〈S〉 contains a 50-short free semigroup, or
(2) 〈S〉 stabilizes a flat or line in X.

Proof. Let S = S0 t Selliptic where S0 is the set of hyperbolic isometries, and Selliptic is the set of
elliptic isometries. Let S1 = S0 ∪ {ese−1 | s ∈ S0, e ∈ Selliptic} and S2 = S1 ∪ {ese−1 | s ∈ S1, e ∈
Selliptic}. Each of S0, S1, and S2 is a finite collection of hyperbolic isometries of X with S-length at
most 5. Assume no pair of word of length at most 50 in S generates a free semigroup. In this case,
we will find a Euclidean subcomplex E that is stabilized by S. This subcomplex E either will be
a combinatorial geodesic, or a Euclidean flat, or will contain an Aut(E)–invariant line by [KS19,
Lemma 8].

By [KS19, Theorem 1], there exists a Euclidean subcomplex E2 stabilized by S2. Since S1 ⊂ S2,
E2 is also stabilized by S1. Let E1 be a minimal subcomplex of E2 stabilized by S1. Similarly,
let E0 be a minimal subcomplex of E1 stabilized by S0. We have E0 ⊆ E1 ⊆ E2. Since the three
Euclidean complexes have dimensions 1 or 2, either E0 = E1, or E0 ( E1 = E2.

First, suppose E0 = E1. If Selliptic ⊂ Stab(E1), we are done. Suppose there exists e ∈ Selliptic
such that eE1 6= E1. If the subcomplexes eE1 and E1 are not parallel, then there exists a hyperplane
ĥ ∈ H(E1) such that eĥ /∈ H(E1). Since ĥ intersects E1, which is a minimal Euclidean complex

stabilized by S0, there exists g ∈ 〈S0〉 such that ĥ ∈ sk(g). It follows that eĥ ∈ esk(g) = sk(ege−1).

Since ege−1 ∈ 〈S1〉 and S1 stabilizes E1, eĥ must intersect E1. Thus eE1 and E1 must be parallel.
Since X is 2-dimensional we get dimE1 = dim eE1 = 1. Since E1 is a subcomplex it must be a
combinatorial line. The parallel subcomplex of g is isometric to E1 × T and is stabilized by S by
repeating the above argument for every element e ∈ Selliptic. Moreover, 〈S〉 preserves the product
structure of E1 × T . By Lemma 5.1, 〈S〉 stabilizes a point or line ` in its action on T . Thus, 〈S〉
stabilizes the line E1 or flat E1 × `.

Now consider the case where E0 ( E1 = E2. We must have dimE0 = 1 and dimE1 = 2. We
repeat the argument from the previous paragraph for E1, E2 in the place of E0, E1. We conclude
that Selliptic ⊂ Stab(E2), as otherwise we get a contradiction with the fact that dimE1 = 2. �

We are now ready to prove Theorem A and Corollary 5.3.

Theorem A. Let G be a finitely generated group acting without global fixed point on a CAT(0)
square complex X. Then either G has uniform exponential growth with w(G) ≥ 600

√
2 or G stabilizes

a flat or line in X.

Proof. Let S be a finite generating set for G. If S contains no hyperbolic isometries then by
Proposition 4.3 we may replace S with a new generating set containing a hyperbolic isometry
whose S-length is ≤ 12. Thus without loss of generality we may assume that S contains at least
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one hyperbolic isometry. If S contains no elliptic isometries, then we reduce to the Main Theorem
of [KS19]. Suppose that S contains at least one elliptic isometry. By Proposition 5.2, either there
exist a pair of words of length at most 50 in S that freely generate a free semigroup or S stabilizes
a flat or line in X. When G has uniform exponential growth we get w(G) ≥ 600

√
2. �

For proper actions on CAT(0) square complexes we can upgrade stabilizing a flat or line to being
virtually abelian.

Corollary 5.3. Let G be a finitely generated group that acts properly on a CAT(0) square complex.
Then either G has uniform exponential growth with w(G) ≥ 600

√
2, or G is virtually abelian.

Proof. Suppose G does not have uniform exponential growth with w(G) ≥ 600
√

2. By Theorem A,
G stabilizes a flat or line F . Consider the image Ḡ of G in Isom(F ). Since the action of G on
X is proper, the action on F is also proper, and so Ḡ is a discrete subgroup of Isom(F ). Also,
the properness of the action implies that K = ker(G → Ḡ) is finite. By Bierberbach’s Theorem
(Theorem 2.7), the quotient Ḡ is virtually abelian. Thus, G is finite-by-(virtually abelian) and
hence virtually abelian. For completeness we include a proof of this in Lemma 5.4 below. �

Lemma 5.4. Let G be a finitely generated finite-by-(virtually abelian) group, i.e. there exists a
finite normal subgroup K < G such that G/K is virtually abelian. Then G is virtually abelian.

Proof. Let A be a maximal rank free abelian subgroup of G/K and let H be the preimage of A in
G. Then H is a finite index subgroup of G and fits into the following short exact sequence:

1→ K → H → A→ 1.

Let π : H → A denote the projection. The group H acts on K by conjugation, i.e. there is a
homomorphism H → Aut(K), so we can pass to a further finite index subgroup H ′ whose action
on K is trivial, i.e. we have the following central extension

1→ K ′ → H ′ → A′ → 1

where K ′ = K ∩H ′ and A′ = π(H ′) < A. Let {a1, . . . , an} be a minimal set of generators of A′,
and let {h1, . . . , hn} be a set of elements of H such that π(hi) = ai for all 1 ≤ i ≤ n. We will
show that 〈hm1

1 , . . . , hmn
n 〉 = Zn for some m1, . . . ,mn ∈ N. This follows from the following claim:

for any g, h ∈ H ′ with [π(g), π(h)] = 1, there exists m ∈ N such that [g, hm] = 1. To see that the
claim is true, note that for every m ∈ N we have [g, hm] ∈ K ′. Since K ′ has only finitely many
elements there exists distinct m1,m2 such that ghm1g−1h−m1 = ghm2g−1h−m2 , which implies that
hm1−m2g−1 = g−1hm1−m2 .

It remains to show that H ′′ := 〈hm1
1 , . . . , hmn

n 〉 has finite index in H ′. Note that A′′ :=
〈am1

1 , . . . , amn
n 〉 has finite index in A′. The finite index subgroup φ−1(A′′) of H ′ is generated by

{hm1
1 , . . . , hmn

n } ∪K, and so is isomorphic to K ×H ′′. �

In general, stabilizing a flat is far from sufficient to show that a group is virtually abelian. The
following example was brought to our attention by Talia Fernós.

Example 5.5. Let G = Z2 ⊕R where R is the Grigorchuk group, which has intermediate growth.
R acts faithfully on a tree T , with a single global fixed point v, so G acts faithfully on the universal
cover of the wedge sum a torus and T along the vertex v. The torus lifts to a 2-flat stabilized by
G, but G does not act faithfully on this flat. Moreover, G is neither virtually abelian nor contains
a free semigroup because it has intermediate growth.

Nevertheless, by studying the interactions between vertex stabilizers it is sometimes possible
to show that certain groups acting improperly on a CAT(0) square complex may still satisfy the
conclusion of Corollary 5.3.
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6. Improper actions and locally uniform exponential growth

It is not known whether all acylindrically hyperbolic groups have uniform exponential growth.
However, they may contain finitely generated exponentially growing subgroups without uniform
exponential growth. For example, this is the case for the free product of Wilson’s group with itself.
In this section, we will show that by understanding vertex stabilizers it is possible to use Theorem A
to prove locally uniform exponential growth results for certain acylindrically hyperbolic groups that
also act on cube complexes. In each case, we make use of the following.

Corollary 6.1. Suppose G is a finitely generated group that acts by isometries on a CAT(0) square
complex X such that finitely generated subgroups of the vertex stabilizers are either virtually
abelian or have uniform exponential growth bounded below by w0 > 1. Then for any finitely
generated subgroup H ≤ G one of the following holds:

(1) H has uniform exponential growth with w(H) ≥ min
{

600
√

2, w0

}
, or

(2) H is virtually abelian, or
(3) H stabilizes a flat or line in X.

Proof. If H acts without global fixed point on X, then by Theorem A, either it contains a uniformly
short free semigroup, or it stabilizes a flat or line. If H has a fixed point in X, then it is a
finitely generated subgroup of one of the vertex groups, so either is virtually abelian or has uniform
exponential growth bounded by w0. �

6.1. Higman group. The Higman group [Hig51], H, is given by the following presentation.

H := 〈ai | ai(ai+1)a
−1
i = a2i+1〉i∈Z/4Z

This presentation gives a decomposition of H as a square of groups with the following local groups.
Each vertex group is a copy of BS(1, 2). Each edge group is a copy of Z. Each 2-cell group
is trivial. This decomposition gives a cocompact action of H on a CAT(0) square complex X,
whose vertex stabilizers are the groups mentioned above. Martin used this structure to show that
certain generalizations of the Higman group act acylindrically hyperbolically [Mar15, Theorem B]
on CAT(0) square complexes. The Higman group itself is acylindrically hyperbolic coming from its
structure as a free product with amalgamation and [MO15].

Theorem 6.2. Let G be any finitely generated subgroup of the Higman group H. Then either G
is cyclic or G has uniform exponential growth with w(G) ≥ 600

√
2 .

To understand exponential growth in the Higman group, we first show uniform exponential
growth of finitely generated subgroups of Baumslag-Solitar groups. Uniform exponential growth of
solvable Baumslag-Solitar groups follows from work of Bucher and de la Harpe [BdlH00], however
they do not address subgroups.

Lemma 6.3 (Baumslag-Solitar groups). Any finitely generated subgroup of a Baumslag-Solitar
group BS(1,m) where m 6= ±1, is either cyclic or has uniform exponential growth bounded by 4

√
2.

Proof. Let S be any finite collection of elements of the Baumslag-Solitar group with presentation
〈a, t | tat−1 = am〉. Let T be the Bass-Serre tree for BS(1,m) with Z vertex and edge groups. This
tree can be obtained from the Cayley complex by collapsing in the a-direction.

By Lemma 5.1, either G = 〈S〉 contains a 4-short free semigroup or stabilizes a point or line in
T . If G stabilizes a point then G is cyclic, so assume that G stabilizes a line `. It suffices to show
that Stab(`) is cyclic.

Every element of BS(1,m) can be written in the form h = aptq because ta = amt. We claim
elements of the form ap cannot stabilize `. Indeed, if ap stabilizes ` then it would fix the line
pointwise because such elements fix a vertex in T . Vertex stabilizers are conjugates of a, so segments
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of length n can only be fixed pointwise by elements that are powers of amn. Taking n larger than
p gives a contradiction. If q 6= 0 then h is also a hyperbolic isometry of T . The only hyperbolic
isometries that will stabilize the axis of g are roots and powers of g. The axes of any other
hyperbolic isometry h will diverge from ` in the tree T , so h cannot stabilize `. It follows that
Stab(`) is cyclic. �

With this, we are ready to address the Higman group.

Proof of Theorem 6.2. By Corollary 6.1 and Lemma 6.3, any finitely generated subgroup G ≤ H
of the Higman group either has w(G) ≥ 600

√
2, or is virtually abelian, or stabilizes a flat or line in

X. Let E be the line or flat in X stabilized by G. We have homomorphism π : G → Isom(E)
where the image Ḡ is virtually abelian. The kernel is contained in

⋂
p∈E Stab(p), so it is cyclic. If

dim(E) = 2 then ker(π) is trivial because the 2-cell groups are trivial. If dim(E) = 1 then E is
contained in the 1-skeleton of X. Stabilizers of adjacent edges have trivial intersection by [Mar17,
Lemma 2.1], so we again have ker(π) is trivial. Therefore, G ∼= Ḡ, and moreover G is cyclic, since
Higman group is torsion-free and does not contain Z2 as a subgroup [Mar17, Proposition 4.15]. �

6.2. Triangle-free Artin groups. Artin groups generalize the braid group. They admit presenta-
tions corresponding to finite labeled graphs where each label m is at least two. Vertices correspond
to generators and an edge labeled by m joining vertices a and b corresponds to the relation

aba · · ·︸ ︷︷ ︸
m

= bab · · ·︸ ︷︷ ︸
m

.

Triangle-free Artin groups are those whose defining graphs have girth ≥ 4. Spherical Artin groups
are those whose quotient Coxeter group is finite. This quotient is obtained by imposing that all
generators have order 2. An Artin group is FC-type when every clique in the defining graph is
associated to a spherical Artin subgroup. An Artin group is 2-dimensional if every spherical Artin
subgroup has rank at most 2. It is easy to see that an Artin group is triangle-free if and only if it
is 2-dimensional FC-type.

Many subclasses of Artin groups exhibit properties of nonpositive curvature and have attracted
much attention in recent years. Indeed, FC-type Artin groups are acylindrically hyperbolic by
Chatterji and Martin [CM19, Theorem 1.2]. In recent work, Martin and Przytycki exploit an
improper action of FC-type Artin groups on CAT(0) cube complexes in order to prove the strong
Tits alternative [MP19].

Charney and Davis showed an Artin group A is FC-type if and only if its Deligne complex DA is
a CAT(0) cube complex. Moreover, they showed that DA is a K(π, 1) space for A so it has the same
cohomological dimension as the Artin group [CD95, Theorem 4.3.5] (see also [MP19]). In particular,
the Deligne complex of triangle-free Artin groups is a CAT(0) square complex. The action of any
FC-type Artin group A on its Deligne complex has vertex stabilizers that are conjugates of standard
parabolic subgroups, which correspond to subgraphs of the defining graph of A.

Theorem 6.4. Let G be any finitely generated subgroup of a triangle-free Artin group A. Either
G is virtually abelian or it has uniform exponential growth with w(G) ≥ 600

√
2.

The base case of the theorem is the following.

Lemma 6.5 (Rank 2 Artin groups). Any finitely generated subgroup of a rank 2 Artin group is
either virtually abelian or has uniform exponential growth bounded by 4

√
2.

Proof. Any rank 2 Artin group A acts geometrically on a CAT(0) square complex isometric to R×T
where T is a simplicial tree [HJP16, Theorem 5.1] (a similar complex is also described in [BM00]).
Also, A is torsion-free [Del72]. Therefore, any subgroup of A acts freely on R× T . The bounds on
growth follow from [KS19, Theorem 1] in the special case where X is isometric to R× T . �
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Proof of Theorem 6.4. The Deligne complex DA of a triangle-free Artin group is a CAT(0) square
complex. Every edge in DA lies in a square and every square in DA has one vertex with trivial
stabilizer joined to two vertices with cyclic stabilizers that are conjugates of subgroups generated by
two distinct standard generators, and one vertex that is a conjugate of a rank 2 standard parabolic
subgroup (see [CD95, MP19]).

Suppose that the exponential growth rate w(G) < 600
√

2. If G has a global fixed point in DA then
G is virtually abelian by Lemma 6.5. Hence, by Corollary 6.1, G stabilizes a flat or line E ⊂ DA.
Therefore, the image, Ḡ, of G in Isom(E) is virtually abelian. The kernel ker(G → Ḡ) has a
subgroup K of index at most 2 that pointwise stabilizes the cubical convex hull of E. The group
K is contained in the pointwise stabilizer

⋂
x∈cHull(E)(0) Stab(x) of cHull(E) in G, which we will

show is trivial. If cHull(E) contains any vertex with trivial stabilizer, then
⋂
x∈cHull(E)(0) Stab(x)

is clearly also trivial. Suppose that E is a combinatorial line that does not contain any vertices
with trivial stabilizers. Such a line must contain a vertex with cyclic stabilizer, so ker(G → Ḡ)
is (possibly trivial) cyclic group. Hence, G is a cyclic-by-(virtually Z) group, which is virtually
abelian. �
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