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My research is in geometric group theory. This is the study of the interplay of the algebraic
properties of infinite finitely generated groups and the topology and geometry of spaces that the
groups act on. In my work I use combinatorial and probabilistic techniques, tools from the algebraic
topology, theory of computation, hyperbolic geometry, study of mapping class groups and the
dynamics of the automorphisms of free groups. My research has connections with the study of 3-
and 4-manifolds, which provide examples and tools. My work also has applications to these fields.
I additionally study groups arising via algebraic constructions.

Here are the main themes of my research, which are discussed in more details in the next three
sections of this document.

Artin groups. They generalize braid groups, and include free groups and free abelian groups.
Artin groups are closely related to Coxeter groups and arise as fundamental groups of quotients of
complexified hyperplane arrangement. They were introduced by Tits in the 60s. Spherical Artin
groups became famous due to work of Bieskorn, Saito and Deligne in the 70s. Despite simple
presentations, general Artin groups are poorly understood. Artin groups can be studied via their
actions on CAT(0) spaces, following Davis, Charney and Salvetti. Combinatorial techniques, such
as Garside methods, can also be utilized in understanding Artin groups. Right-angled Artin groups
are a particularly nice family of Artin groups, and play an important role in the theory of special
cube complexes.

Non-positive curvature. In the late 80s, in a foundational paper for geometric group theory,
Gromov introduced two notions of “curvature” for metric spaces. The curvature of finitely generated
groups can be studied via the action of the group on its Cayley graphs, which is a metric space
that encodes the structure of the group. Word-hyperbolic groups capture many aspects of negative
curvature of manifolds, and CAT(0) spaces are in a precise sense at least as nonpositively curved as
the Euclidean plane. Both of these notions have far reaching algebraic consequences. The geometry
of CAT(0) cube complexes and general CAT(0) spaces have strong connections with the algebraic
properties of the groups that act on them. One of the most remarkable applications of CAT(0)
cube complexes, to the theory of 3-manifolds was the resolution of Waldhausen’s virtual Haken
conjecture and Thurston’s virtual fibering conjecture by Agol and Wise. I am interested in both
constructing and obstructing actions on such spaces.

Algebraic fibering and coherence of groups. These properties can be thought of as group
theoretic analogues of properties of 3-manifolds, decomposing as a fiber bundle over a circle, and
the compact core property of 3-manifolds. Algebraic fibration can also be constructed using discrete
methods, such as Bestvina-Brady Morse theory. The notion of coherence has been studied since
the 70s, as it arose from the work of Scott, Shalen, and Stalings. A famous question of Baumslag
asks whether all 1-relator groups are coherent.
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1. Artin groups

Artin groups generalize braid groups. They admit presentations where every relation is of the
form

aba · · ·︸ ︷︷ ︸
m

= bab · · ·︸ ︷︷ ︸
m

where a, b are two distinct generators. Spherical Artin groups are those whose quotient Coxeter
groups, obtained by imposing that all generators have order 2, are finite. Spherical Artin groups,
like finite Coxeter groups, are classified by their Dynkin-Coxeter diagrams.

Actions on cube complexes. Together with Jingyin Huang and Piotr Przytycki we examined
proper and cocompact actions of Artin groups on CAT(0) cube complexes and proved that many
Artin groups do not admit such actions. This is an interesting result, because in general proving
that a group cannot act (properly, cocompactly) on a CAT(0) cube complex can be hard, as there is
no general procedure to do so. We gave a complete characterization of 2-dimensional or 3-generated
Artin groups that admit such actions, in terms of the combinatorics of its defining graph.

Theorem 1 (Huang-Jankiewicz-Przytycki, 2016). Let A be a three-generator Artin group. Then
the following are equivalent.

(1) The group A acts properly and cocompactly on a CAT(0) cube complex.
(2) A finite index subgroup of A acts properly and cocompactly on a CAT(0) cube complex.
(3) The defining graph of A is one of:

2

2

m 2m

2n m

This theorem give a partial answer to the question of Charney about actions of Artin groups on
CAT(0) cube complexes, under the assumption that the action is cocompact. The following is a
noteworthy corollary.

Corollary 2 (Huang-Jankiewicz-Przytycki, 2016). The braid group B4 on 4 strands does not have
a finite index subgroup that acts properly and cocompactly on a CAT(0) cube complex.

The above corollary was surprising to the experts in the field, since B4 is known to be CAT(0)
by Brady-McCammond. We also obtained a similar result for all 2-dimensional Artin groups.

Theorem 3 (Huang-Jankiewicz-Przytycki, 2016). There is a complete classification of 2-dimensional
Artin groups acting properly and cocompactly on CAT(0) cube complexes in terms of the combi-
natorics of their defining graphs.

Independently, the above results were also obtained by Haettel. Without the assumption on
the cocompactness, Haettel recently proved that some triangle-free Artin group act properly on
locally finite, finite dimensional CAT(0) cube complexes. The following question remains open,
and I would like to answer it.

Question A. Do braid groups act properly on CAT(0) cube complexes?

I have so far been exploring the case of the Artin group A333 which is commensurable with the
quotient of a braid group on four strands modulo its center. I am working on classifying all its
codimension one subgroups.
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Residual finiteness. In my recent work, I proved that many of these groups considered previously
are residually finite. A group G is residually finite if for every g ∈ G − {1} there exists a finite
quotient φ : G→ Ḡ such that φ(g) 6= 1. All linear groups, i.e. groups with faithful representations
into GLn(R) for some n, are residually finite by a theorem of Malcev.

Previously, there were very few families of Artin groups known to be residually finite. Spherical
Artin groups were known to be linear by the work of Krammer, Bigelow, followed by Cohen-Wales
and Digne. It can be deduced from the work of Squier that affine Artin groups on three generators
are also residually finite. Some examples were provided by (Blasco-Garcia)-(Martinez-Perez)-Paris
and (Blasco-Garcia)-Juhasz-Paris. In the latter paper, a question whether all 3-generator Artin
groups are residually finite was posed. The question of residual finiteness of Artin groups was also
raised by Hsu and Wise. I give a partial answer to these questions.

Theorem 4 (Jankiewicz, 2020). The Artin groupAMNP is residually finite, provided thatM,N,P ≥
3 and (M,N,P ) 6= (3, 3, 2k + 1).

The above results holds for more general family of Artin groups, whose defining graph satisfies
certain combinatorial criterion. My proof of residual finiteness of those Artin group, relies on the
following splitting theorem.

Theorem 5 (Jankiewicz, 2020). All 3-generator large type (i.e. where all exponents are ≥ 3) Artin
groups split as free products with amalgamation of finite rank free groups.

The above theorem holds for a larger family of large type Artin groups. The existence of a
splitting does not guarantee residual finiteness. In fact, there exists examples of amalgamated
product of finite rank free groups that are not residually finite, and can even be simple. Such
examples were constructed by Bhattacharjee, Wise and Burger-Mozes (the latter two are lattices in
a product of trees, which I briefly discuss in the next section). I would like to answer the following
question.

Question B. Can you characterize residual finiteness of amalgamated products of finite rank free
groups?

Generalized Tits conjecture on right-angled Artin subgroups of Artin groups. The Tits
Conjecture, proved by Crisp and Paris, states that for every Artin group A with the standard set of
generators S, the subgroup 〈s2 : s ∈ S〉 is an obvious right-angled Artin group, i.e. where [s2, t2] = 1
if and only if [s, t] = 1.

With Schreve, we propose the following generalization of
the Tits Conjecture. Given an irreducible, spherical subset
T ⊂ S, let ∆2

T denote the corresponding center of the pure
Artin subgroup PAT . In the braid group, viewed as a mapping
class group of a punctured disc, those new elements correspond
to the Dehn twists about the curves enclosing more than two
consecutive punctures.

Question C. Given N ≥ 1, is the subgroup 〈∆2N
T : T ⊂ S〉 of

an Artin group A the obvious right-angled Artin group?

The above problem was conjectured to have a positive answer for N = 1 and every Artin group
by Davis, Le and Schreve. However, we show that it fails for N = 1 for braid groups on at least
eight strands. We give positive answers for certain families of Artin groups.

Artin group is locally reducible if every spherical special subgroup is a product of Artin groups
of rank 1 or 2. This family of Artin groups was introduced by Charney in the study of the original
Tits conjecture.
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Theorem 6 (Jankiewicz-Schreve, 2020). Let A be a locally reducible. Then the subgroup of A
generated by sufficiently large powers of all the Garside elements of irreducible parabolic subgroups,
is a right-angle Artin group.

We also examines spherical Artin groups and showed the following.

Theorem 7 (Jankiewicz-Schreve, 2020). Let A be a spherical Artin group of any type other than
E6, E7, E8. Then for sufficiently large N the subgroup 〈∆2N

T : T ⊂ S〉 of A is a right-angled Artin
group for N sufficiently large.

Our proof uses representations of Artin groups in mapping class groups, due to Perron and
Vannier, and utilizes Koberda’s theorem on right-angled Artin subgroups of mapping class groups.
In the case of exotic types En, the Perron-Vannier representation is not injective on 〈∆2N

T : T ⊂ S〉.
It remains open whether Question C has positive answer for those three cases.

2. CAT(0) cube complexes

A CAT(0) cube complex is a CW complex obtained from a collection of Euclidean cubes by
identifying their sides via isometries that satisfies a combinatorial condition guaranteeing that the
complex admits a CAT(0) metric in which the cubes are Euclidean unit cubes. CAT(0) cube
complexes were first introduced by Gromov as easily constructible examples of CAT(0) spaces.
The combinatorial nature of CAT(0) cube complexes provided by their hyperplanes makes them
natural generalizations of trees and makes them very accessible to work with.

There are strong relations between actions on CAT(0) cube complexes and algebraic properties
of the group. The most fundamental such correspondence comes from the Sageev’s construction
relating essential actions on CAT(0) cube complexes with codimension-1 subgroups. Other exam-
ples are the Tits alternative or the rank rigidity conjecture of Ballman-Buyalo, which are known to
hold for groups acting properly and cocompactly on CAT(0) cube complexes, but remain unknown
for general CAT(0) groups.

Cubical dimension and uniform exponential growth. The cubical dimension of a group G,
denoted by cub-dimG, is the minimum n such that G acts properly on an n-dimensional CAT(0)
cube complex. Similarly, the CAT(0) dimension CAT(0)dimG is the minimum n such that G acts
properly by semi-simple isometries on an n-dimensional CAT(0) space. We have

cdG ≤ CAT(0)-dimG ≤ cub-dimG

where cdG is the cohomological dimension of G. Examples of group with (bounded) gaps between
the cohomological and CAT(0) dimensions were provided by Bridson, and Brady-Crisp.

I constructed the first examples of groups with arbitrarily large finite gaps between their cubical
dimension and their cohomological and CAT(0) dimensions.

Theorem 8 (Jankiewicz, 2019). For every n there exist hyperbolic groups with cdG = CAT(0)-dimG =
2, and cub-dimG > n.

My construction uses small cancellation theory, and analysis of free semi-subgroups in isometry
groups of CAT(0) cube complexes. The case of n = 2 in the above theorem, can be deduced from
the work of Kar and Sageev who study uniform exponential growth of groups acting freely on
CAT(0) square complexes. My work generalizes some of their methods to higher dimensions.

In a subsequent work, joint with Daniel Wise, we use my result to construct the following
example.

Theorem 9 (Jankiewicz-Wise, 2019). There exists a finitely generated group of cohomological
dimension 2 that acts freely (and thus metrically properly) on a locally-finite CAT(0) cube complex,
but does not act properly on any finite dimensional CAT(0) cube complex.
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The exponential growth rate of G with respect to a finite generating set S is defined as

w(G,S) := lim
n→∞

|B(n, S)|1/n.

A group G has exponential growth if w(G,S) > 1 for some (equivalently every) finite generating
set S, and it has uniform exponential growth if there exists k > 1 such that w(G,S) > k for every
finite generating set S. Kar-Sageev proved that a group acting freely on a CAT(0) square complex
has uniform exponential growth, unless it is virtually abelian.

In a recent joint work with Radhika Gupta and Thomas Ng, we extend the result of Kar-Sageev
to certain other groups acting on CAT(0) cube complexes. We show that the same is true for
groups with torsion:

Theorem 10 (Gupta-Jankiewicz-Ng, 2020). Every group acting properly on a CAT(0) square
complex has uniform exponential growth, unless it is virtually abelian.

Building on my work on cubical dimension, Gupta, Ng and I also generalize the result to arbitrary
dimension, under the assumption that X has isolated flats. CAT(0) spaces with isolated flats can
be non-hyperbolic, but they have many features of hyperbolic spaces.

Theorem 11 (Gupta-Jankiewicz-Ng, 2020). Let G acts freely on a CAT(0) cube complex of dimen-
sion d with isolated flats that admits a geometric group action. Then G has uniform exponential
growth depending on d only, unless G is virtually abelian.

We have also shown uniform exponential growth of certain groups acting improperly on CAT(0)
square complexes with vertex stabilizers that are either virtually abelian, or have uniform expo-
nential growth. It includes subgroups of a triangle free Artin group or of the Higman’s group.

Lattices in product of trees. Let T, T ′ be regular, locally finite trees of degree ≥ 3. The product
T × T ′ has a natural structure of a CAT(0) square complex. A (uniform) lattice in Aut(T × T ′) is
a discrete group acting properly and cocompactly on T × T ′. The simplest example of such group
is F2 × F2 which acts on a product of two copies of a regular valence 4 tree.

A lattice that does not virtually split as a direct product of free group is called irreducible and can
be characterized as having non-discrete projections to each of the factors Aut(T ). Famous examples
of irreducible lattices in product of trees are due to Burger-Mozes, who constructed example that
are virtually simple. Wise independently constructed non-residually finite examples. An example
of an irreducible lattice is a group generated by a, b, x, y with the relations below.

a

x

b

x

a

y

b

y

a

y

a

x

b

x

b

y

A visual boundary ∂∞X of a proper CAT(0) space X is a well-defined compactification of X.
Unlike for hyperbolic groups, a visual boundary of a CAT(0) group does not need to be unique.
Croke-Kleiner constructed an example of a CAT(0) group acting geometrically on two CAT(0)
spaces X1, X2 whose visual boundaries ∂X, ∂X ′ are non-homeomorphic. We say a CAT(0) group
G is rigid if any two boundaries of CAT(0) spaces that G acts on are homeomorphic.

Annette Karrer, Kim Ruane, Bakul Sathaye and I are interested in addressing the following
question.

Question D. Are lattices in a product of trees rigid?

The visual boundary ∂∞(T ×T ′) of the product of two regular trees is a join C ?C of two copies
of the Cantor set. Hence the above question asks if the boundary of every CAT(0) space that
given lattice in Aut(T × T ′) acts on geometrically, is homeomorphic to C ?C. We have proved the
following.
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Theorem 12 (Jankiewicz-Karrer-Ruane-Sathaye, 2020). Let G < Aut(T × T ′) act freely and
vertex-transitively on T × T ′. Let G act properly and cocompactly on a CAT(0) cube complex
X. Then X splits as a product of CAT(0) cube complexes X1 ×X2 with ∂Xi = C. In particular,
∂X ' C ? C.

We are working towards generalizing the above result to show that the boundary of arbitrary
CAT(0) space with a geometric group action of G is a join of two copies of the Cantor set.

Genevieve Walsh and I are investigating the question of incoherence of lattices in products of
trees. A group is coherent if every finitely generated subgroup is finitely presented, and otherwise
it is incoherent. Example of coherent groups include free groups, surface groups, fundamental
groups of 3-manifolds, free-by-cyclic groups. A classical example of a group that is incoherent is
F2 × F2, which is an example of a reducible lattice in product of trees. Genevieve Walsh and I are
investigating the following question.

Question E. Are all lattices in a product of trees incoherent?

A negative answer would imply that coherence is not a quasi-isometry invariant. A positive
answer would be an indication that coherence might be a “geometric” property, i.e. that two group
that act geometrically on the same space either both coherent, or both incoherent. There are many
collections of coherent groups share geometry (such as acting on a tree, hyperbolic plane, hyperbolic
3-space), and most proofs of coherence are geometric in nature. On the other hand most of the
known proofs of incoherence rely on existence of an incoherent subgroup such as F2 × F2 or the
kernel of an algebraic fibering in a group of dimension 2. Thus, it would be very interesting to find
geometric reasons for incoherence.

We have so far focused on understanding some small examples, and proved incoherence of some
of them by finding subgroups that algebraically fiber. We are working on finding geometric or
algorithmic method of constructing subgroups of lattices in products of trees.

3. Algebraic fibering

As mentioned in the previous section, a group G is coherent, if every finitely generated subgroup
of G is finitely presented. One of my project concerning incoherence is described in the previous
section. We say G algebraically fibers, if it admits an epimorphism onto Z with finitely generated
kernel. Stallings’ fibration theorem states that a compact irreducible 3-manifold M fibers as a
surface bundle over a circle if and only if π1M algebraically fibers. Algebraic fibering of any group
G of cohomological dimension 2 yields incoherence of G, unless G is free-by-cyclic, by a theorem of
Bieri.

With Sergey Norin and Daniel Wise we give a sufficient condition for a right-angled Coxeter
group W to virtually algebraically fiber, in terms of the combinatorics of the defining graph Γ of
W . We prove the following.

Theorem 13 (Jankiewicz-Norin-Wise, 2019). If Γ has a legal system, then WΓ virtually alge-
braically fibers.

A legal system in the above statement is a coloring of vertices of Γ, along with a partition of the
vertex set of Γ which satisfy certain combinatorial condition. The proof relies on construction of a
Morse function in the sense of Bestvina–Brady for the CAT(0) cube complex associated with W .

Among the most noteworthy examples of Γ with legal systems, are the 24-cell and the 600-
cell. The Coxeter groups that they define, are 4-dimensional hyperbolic reflection groups with
fundamental domain respectively right-angled ideal hyperbolic 24-cell, and right-angled hyperbolic
120-cell. This yields to the first examples of higher dimensional hyperbolic manifolds with alge-
braically fibered fundamental groups. No hyperbolic 4-manifolds can fiber over a circle, because
of the Gauss-Bonnet theorem, so algebraic fibering is a natural candidate for generalizing virtual
fibering of 3-manifolds to the higher dimensions.
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Example 14 (Jankiewicz-Norin-Wise, 2019). We give explicit examples of a compact hyperbolic
4-manifold and a non-compact finite volume hyperbolic 4-manifold, whose fundamental groups
algebraically fiber.

More recently, Kielak showed that groups satisfying RFRS condition (introduced by Agol and
used in his famous proof of virtual fibering of closed hyperbolic 3-manifold), virtual algebraic
fibering is equivalent to vanishing of the first L2-Betti number.

Our work inspired a number of groups of other mathematicians. Fiz-Pontiveros, Glebov and
Karpas proved that the satisfying our criterion is generic for random graphs, and consequently ran-
dom right-angled Coxeter groups almost surely admit virtual algebraic fibering. Most interestingly,
recently, Battista and Martelli, extended and smoothened our Morse function in the case of the
24-cell. That led to the first known example of a 4-manifold M with perfect circle-valued Morse
function, i.e. a smooth function f : M → S1 with the minimal possible number of critical points,
which is equal |χ(M)|. Our construction was also revisited by Ma and Zheng.

In another direction, I am interested in using our methods to answer the following question.

Question F. Are there hyperbolic Coxeter groups of arbitrarily high virtual cohomological dimen-
sion that virtually algebraically fiber?

A nice feature of right-angled Coxeter groups is that many properties of the group can be read
from the defining graph. In particular, Moussong proved that a right-angled Coxeter group is word
hyperbolic if and only if every 4-cycle in its defining graph has a diagonal. Along with the dimension
bounds of right-angled Coxeter groups coming from non vanishing homology of the defining graph,
by Davis, the above question can be reduced to the question about the existence of a simplicial
complex with a legal system, that is a pseudo-manifolds and where every 4-cycle has a diagonal.

In another joint work with Daniel Wise we apply Bestvina–Brady Morse theory to the Coxeter
groups G(r,m) of rank r and a constant exponent m (i.e. (ab)m = 1 for all pairs of generators a, b).
We prove the following.

Theorem 15 (Jankiewicz-Wise, 2016). For each m ≥ 3 for all sufficiently large r the group G(r,m)

virtually algebraically fibers, and in particular is incoherent.
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